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Particle transport in a random velocity field with Lagrangian statistics
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The transport properties of a random velocity field with Kolmogorov spectrum and time correlations defined
along Lagrangian trajectories are analyzed. The analysis is carried out in the limit of short correlation times, as
a perturbation theory in the ratio, scale by scale, of the eddy decay and turnover time. Various quantities such
as the Batchelor constant and the dimensionless constants entering the expression for particle relative and
self-diffusion are given in terms of this ratio and of the Kolmogorov constant. Particular attention is paid to
particles with finite inertia. The self-diffusion properties of a particle with Stokes time longer than the Kol-
mogorov time are determined, verifying on an analytical example the dimensional results (PiQi&a Fluids
14, 4266(2002]. Expressions for the fluid velocity Lagrangian correlations and correlation times along a solid
particle trajectory are provided in several parameter regimes, including the infinite Stokes time limit corre-
sponding to Eulerian correlations. The concentration fluctuation spectrum and the nonergodic properties of a
suspension of heavy particles in a turbulent flow, in the same regime, are analyzed. The concentration spectrum
is predicted to obey, above the scale of eddies with lifetime equal to the Stokes time, a power law with
universal—4/3 exponent, and to be otherwise independent of the nature of the turbulent flow. A preference of
the solid particle to lie in less energetic regions of the flow is observed.
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I. INTRODUCTION Given the difficulty in defining a velocity field with La-
grangian statistics, a successful strategy for the treatment of

One of the differences between high Reynolds numbetransport has been to neglect time correlations altogether,
turbulence and other examples of random fields with powert.e., to consider a velocity fieldu such that
law scaling, is the Lagrangian nature of time correlatidds  (u,(x,t)uz(0,0))=U,z(x)5(t): the so called Kraichnan
From the theoretical point of view, the need for a Lagrangiammodel[6]. In this model, Eulerian and Lagrangian time sta-
treatment of time correlations has been one of the main diftistics trivially coincide in what is the zero order of some
ficulties in the realization of statistical turbulent closuf2s  perturbation theory in powers of the correlation time of the
Because of this, many such theories assume from the statirbulence. It has been possible, in particular, to determine
that the turbulence dynamics be equivalent to that of a ranthe anomalous scaling exponents of a passive scalar injected
dom velocity field with identical energy spectrum but Eule- at large scales in the velocity fiefd—10]. The origin of this
rian time statistics, i.e., the fluctuations decay without beingsuccess is that, although the time structure of the velocity
transported by the larger vorticE8-5]. Such an assumption correlation is lost, that of the relative displacement, whose
does not work in the case of particle transport: both relativegyeometrical properties determine the passive scalar correla-
and self-diffusion are affected by the way in which time tions, is preserveffl1-13. (For instance, particle pair sepa-
correlations are defined. ration still obeys Richardson diffusion.

Concerning self-diffusion, in Kolmogorov turbulence, The question, at this point, is how to introduce finite cor-
fluctuations at a scalewithin the inertial range, have char- relation times in a perturbative manner, but preserving the
acteristic velocity~1® and decay time~1~% along fluid  Lagrangian nature of correlations. There are practical reasons
trajectories. Hence, in a timethe velocity of a fluid parcel to do this. One motivation, of course, is to be able to deter-
will change by an amount of the order of that of a fluctuationmine the time correlations of the particle velocities. Lagrang-
with that lifetime, i.e., bytY2 If the fluctuations were not ian dispersion modelgl4—16 are based on the adoption of
advected by the flow, the fluid parcel would see the fluctuaprescriptions on the form of these time correlations; to be
tion only for the time~1 "1 it takes to cross it. The variation able to determine them directly from the statistical properties
of the fluid parcel velocity in a timé would be therefore of the velocity field would be, therefore, of some interest.
~t13, It must be said that most of the prescriptions entering a

Concerning relative diffusion, this process is determined_agrangian dispersion model could be obtained, in practice,
by vortices with the size of the fluid parcel separation at theby dimensional reasoning or by experiments. In some cases,
given time. If these vortices were fixed in space, their effeclike in the presence of particles endowed with inertia, this
on relative diffusion would be proportional to the crossingturns out, however, to be a difficult tak7,18. It is very
time by the fluid parcels, which is determined by the largedifficult, for instance, to make assumptions on the preference
scale properties of the flow. In other words, if time correla-of solid particles to lie in certain regions of the flow instead
tions were given in an Eulerian reference frame, the processf others[19—21]. Solid particle transport by a turbulent flow
of relative diffusion would not depend solely on the interpar-is an example of a situation in which careful treatment of the
ticle distance and on the velocity difference, but also on théime dependent statistics of the velocity field is essential. It is
total velocity. precisely the interplay between the response time of the solid
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particle to the fluid, i.e., the Stokes timg, and the charac- [for the generic vectov, we indicatev, =(—v,,v4)], and
teristic times of the turbulent floj22], which determines the §&,(t) is the Fourier transform of a zero mean fully uncorre-
dynamics, and this is clearly lost when all the turbulent timedated noise term of unitary amplitude,
are sent to zero.

Recently, there has been strong theoretical interest on the (§(x,1)£(0,0) = 8(x) 8(1). 2.3
problem of turbulence induced concentration fluctuations in ] )
a heavy particle suspension. In REZ3], the role of a finite  1he damping and forcing kernetg andhy are chosen, for
correlation time of the turbulent field was recognized. In RefX<7~*, with 7 the Kolmogorov length of the flow, as
[24], the case of a particle with Stokes time in the turbulent

viscous range was analyzed exploiting the fact that, in this = pCio e K2+ kg™, 2.9

case, the fluid velocity is spatially smooth on the scale of .

interest for the solid particle. In both Ref23] and [24], 8mpCa2 ek?

however, the inertial range structure of the turbulent flow Hk:|hk|2:W1 (2.9
0

was disregarded altogether. The approach carried on here,
allows one instead to analyze the production of concentratio

Olhile, for kn>1, some cutoff is imposed on the forcing

fluctuations in any regimes of Stokes times, in particular, 'namplituder. In this way, the velocity spectrutd,(t), de-

the inertial range, where qualitatively different behaviors for_ _ 2 .
the concentration fluctuation buildup are observed. E?}(Zjlbywk(t)up(o» U(t)(2m)” 5(k+p), will read, for

The purpose of this paper is to extend the Kraichnan
model to short but finite correlation times, preserving, in a K.k, exp— ydt])
controlled perturbation theory, the Lagrangian structure of U (t)= 47TCK0I?2/3 L Yk ' (2.6)
correlations, and providing several applications to the trans- K2 (k?>+k3)*3
port of particles with and without inertia. The analysis will
be confined to a situation of two-dimensional, stationary, howhereCy,, and?play the role, respectively, of the Kolmog-
mogeneous, and isotropic turbulence. orov constant and the inertial range energy flux in a real

This paper is organized as follows. In Sec. Il, the equatyrbulent field having this correlation spectrum. Hgr<k
tions determining the extension of the Kraichnan model will< ;=1 we thus have the energy spectrume,
be Mustated and thr i propertes dscussed SECtN L % . Ideniying ;- il the cecay ime ant

’ =21 112 H : al
diffusion and relative diffusion of fluid parcels, including the K““Uy 7(0) with the turnover time of an eddy at sc&le-,

expression for the constants involved, will be determined;We see thap gives the ratio of the eddy turnover and eddy

the effect of finite diffusivity will be discussed and the OSC@Y time in the inertial range. The effect of sweep by the

Batchelor constant for a passive scalar injected at large sca\%rge scales, however, Is not accounted for n this way. .
The most natural way to impose Lagrangian correlations

in the flow will be calculated. In Sec. IV, the transport prop- in the random velocity field is to include an advection term
erties of a heavy particle with Stokes time longer than the y

Kolmogorov time will be studied, focusing on the relation In Eq.(2.1), which will take the following form in real space:
between the correlation time for the fluid velocity sampled

by the particle, and its Lagrangian and Eulerian counterparts. [o+ u(x,t)~V]q(x,t)+f d?yy(x—y)q(y,t)

Section V will be devoted to calculation of the concentration

fluctuations arising from compressibility of the heavy par-

ticle flow. In Sec. VI, the bias introduced by inertia in the ZJ d?yh(x—y)&(y,t). 2.7
sampling of fluid velocity by solid particleéonergodic ef-

fecty will be analyzed. Section VII will be devoted to con- Thjs has the form of a vorticity equation in which the forcing

clusions. and dissipation terms, instead of being localized, respec-
tively, at large and small scales, act over the whole of the
II. EINITE CORRELATION TIME EXTENSION inertial range, and this is reflected in their being nonlocal

OF THE KRAICHNAN MODEL operators in real space. This is opposite to what happens in a

) ) o ) ~real turbulent field, where energy balance is established be-
A two-dimensional random velocity field with Eulerian tyeen large scale forcing and small scale viscous dissipation,
correlation times scaling like the eddy turnover time of a realby means of the nonlinear cascade. A nonlinear cascade is
turbulent flow can be obtained very simply, writing appropri- stji| present because of the convection term, but it acts on the
ate _L_ang_evm equations for the Fourier components of thgime scale of the eddy turnover time, and, for lageits
vorticity field, effect is only a correction to that of the forcing and damping
terms. Choosing large has, therefore, the consequence that
k(1) + 7 () = hye &y (1), (2.1)  convection acts merely as a large scale sweep.
Actually, Eqg. (2.7) looks a lot like the typical starting
whereqy(t) is the(spacg Fourier transform of the vorticity, point of many turbulent closur¢8—5], in which y, gives the
turbulent response functiofeddy viscosity of small scalgs
q(x,t)=V, -u(x,t), (2.2 and hy the nonlinear forcing by the cascade. For instance,
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p~? coincides with the renormalized dimensionless coupling
constant of the renormalization grotRNG) closure[5,25],

and its smallness is there the basis for the establishment of a
perturbation theory. Here, the philosophy is rather different:
no parametrization of the turbulence cascade is Sougm, i.e., the relative amount of particle Separation increase in an
chosen arbitrarily large, and the similarity with real turbu- €ddy lifetime. The zero order of the theory, which is Gauss-

dz(t|xy) [u(x,0—u(y,0)

-1
|x—y| p (2.14

|X_y| Yix-y|~1

lence is expected to be only kinematiélso, the separation

of a Kolmogorov constant out of the energy flexis arbi-
trary.)

Things can be made a little bit more quantitative, intro-

ducing scale by scale the sweep time,
Te=k Hu?) 2~ Cy 2% g% 1, (2.9

i.e., the time needed to a vortex of size! to pass in front of

a fixed probe. We see that sweep is important for all scale

for which T, <1, i.e., from Egs.(2.4) and (2.6), for k

>kop®. The Kraichnan model is recovered when sweep ca

be neglected in all of the inertial range, i.e., far

> (ko) ~ 3. This means basically that the zero correlation
time limit is taken before the infinite Reynolds number limit

nko—0. In this regime we have

Ui(t)= 2

2
7(:;’5,?/%10/35(0. (2.9

To understand what happens in the regime of dominant
sweep, it is convenient to shift to Lagrangian coordinates.

Introduce then the coordinate(t|x,ty;) of a fluid parcel

which at timet, is atx, and define the Lagrangian velocity,

ut(x,t) =u(z(t|x,0),t) (2.10

and analogous expressions figr(x,t) and the other fields.

After introducing the increase of trajectory separation in

time t: 8z(t|x,y) =z(t|x,0)—z(t]y,0)— (x—y), Eq.(2.7) be-
comes, in the new variables,

ag-(x,t) + J d?y Y[ x—y+ dz(t|x,y) 1g"(y, )

= f d?yh[x—y+ 8z(t|x,y) J&(y.t), (2.1

which must be coupled with the equation féz; inverting
Eqg. (2.2,

I ~ L
d2(t|x.y)=5— | d*r[G(x,r)—=G(y.r]a-(r.t)
(2.12
with
[Xx—r+dz(t|x,r)],

G(x,r)= .
() |x—r+ 6z(t|x,r)|?

(2.13

ian and is described by Eq2.6) after substitutingu— u,
corresponds to neglecting trajectory separation in an eddy
lifetime, while keeping the uniform large scale sweep, im-
plicit in the Lagrangian fieldy".

Although the results that follow in the present paper are
all obtained to the lowest order in the expansion[26],
associated with neglecting all non-Gaussian effects,ira
diagrammatic expansion of Eq2.12 and(2.13) in terms of
the fieldsq", 6z and their conjugate could be obtained by
means of the Martin-Siggia-Rose formalid@7]. This ex-
pansion would only be valid locally arourtd=0, since, at

Igong times, trajectory separation becomes domin@rd. be

consistent, this perturbation expansion should not receive
contribution by correlations involving pairs of points in
space-time such th@qx_xr‘fl|t_t/|>p, but this is expected
to be true from the exponential decay of the time correla-
tions)

The interaction terms in the perturbation expansion are
obtained Taylor expanding the kernelsG, andh (H work-
ing with the field action The result fory is, for instance,

[

y(x—y+6z(t|x,y)) = y(x—y)+ 241 Mnyinl' “inx—y)

X 8z; (t[x,y)- -~ 6z (t|xy),
(2.15

with A, =1 a coefficient that may scale when carrying on
n

dpower counting. Similar coefficientsg and\y are intro-

duced in the Taylor expansion f@ and H. The theory is
thus characterized by an infinite number of interactions in-
volving vertices, which, t@(p "), have up to 2-n legs.

To check for divergences at lardein the perturbation
expansion, we use power counting directly in EG51)—
(2.13 [28]. Rescaling coordinates and times as

and t—A%3, (2.16

X— AX
Egs. (2.1)—(2.13 remain invariant in form, provided that

we rescale the various fields and interactiohs q', 6z,
Ny Ao A o asA—ATAA, with

H=-2 (o=
[a]=-3. [s21=1,

[\, ]=[\w ]=[Ae,1=0. (217

This leads to expect logarithmic divergences at lakye
meaning renormalizability of the field theory and the possi-

We see then that the natural expansion parameter of thality of logarithmic correction to scaling, produced by

theory is

renormalization of the parameters in E¢®.11)—(2.13.
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It must be mentioned that marginal interactions and renorThe Lagrangian correlation time, is then readily calcu-
malizability are consequences of the dimensional relatiorated,
implicit in Kolmogorov scaling{g-]= —[t]. In general, had

-1
we set a 1=<|uLIZ>{ f di(u(xt)-u"(x0)|  =2pCicde"kg"
n~K', H~K®, (2.18 (3.2
we would have obtained and we have the following relation between the turbulence
) 3 levelu=(u?)=(|u*|?) and the integral scales of the fldwy
r—s— r—s .
[qH]=—5—, [o2="5—, andr:
U2=3Cy, €%, #2=6pC32 e, . (3.3
n
[\, J=[n 1=[Ng,1=—n([t]+[q"]) = 5(s+2-3n). The correlation timer, is determined by the particular form

(2.19  of Uk we have chosen at smé&l which is nonuniversal. It is
more interesting, and relevant from the point of view of La-
We thus see that super-renormalizabiljty] <O and non- grangian dispersion modeling4,29, to calculate the La-
renormalizability[\]>0 of the theory occur, respectively, grangian time structure function,
for positive and negativeq“]+[t] [28]. This corresponds to

the two regimes of eddy decay time becoming asymptoti- ([ug(x,t)—ug(x,0) [ug(x,t) —up(x,0)])
cally longer(shortej than the eddy turnover time, and hence 1
tsrlzlgsonlmearlty becoming dominarihegligible at large :§<|UL(X,t)_uL(X,0)|2>5aB. (3.4

Marginality of the interactions means that logarithmic di- We di . diatelv that. in ord h If-simil
vergences may arise both at large and srkaft small k, e discover immediately that, in order to have a self-similar
pectrum for the inertial range, the time correlations should

however, such divergences are not expected, due to the suﬁ)o . ime derivali 0
traction in the definition obz. The reason is sketched below . ?.V% cbontElnuosuls time derivative &0, a property not sat-
(more details will be given in a separate publication; it mustSfied by Eq.(3.D).

be said, anyway, that this is not a surprise: Lagrangian clo- This self-similarity violation can be illustrated in a simple
sures[2] were introduced precisely to cure the infrared di- vay, imagining the turbulence field in the neighborhood of

vergences arising in the original Eulerian theoriés it ap- the fluid parcel as a superposition of nested eddies with scale

pears from Eq(2.17), smallk divergence is due to internal 'n: VElOCity Uy, and eddy turnover time,,

lines in a loop diagram involving the fieléz. The scaling of _| o-n —\ o-ni3 — . 5-2n3

Eq. (2.17 is associated with large, not with sméllbehav- In=lo2"%  Un=Up2" ™% 7=1702 - @9
iors. In fact, the divergences occurring for larfgén a loop  |f the time correlation decayed linearly for-0, we would
diagram will not change if we exchangez(t|x,y) have

—2(t]x,0)+ z(t]y,0)— (x+y); this is because each small

eddy contributes to the separatinrry an amount that is of ot P t
the same order of the one to sweep. Now, the Iogarithmié'L’L(X't)_UL(X’O)|2>NTE<t u“r_n+72>t un~uoln(70/t)7_—0.
divergence predicted at smalin a loop diagram comes ! ! (3.6)
indeed, from equating the scaling of the swex(p|x,0)

+2(t]y,0)— (x+y) with that of the trajectory separation Thus, identical scaling ofjﬁ and 7,, and linear decay of
8z(t|x,y), also at smalk, which is incorrect. For smak, correlations cause the largest space scale to contribute to the
this scaling should be corrected by a fackoper field 5z  structure function at arbitrary short time separatipm the
involved in the lines of the loop, and this is enough to elimi-same way as a vortex with eddy turnover time-t, whence

nate divergence. the logarithmic correction involving,.
In order to have a quadratic behavior of the time correla-
Il. PASSIVE TRACER TRANSPORT tion att=0, it is necessary that the noigein Eq. (2.7) be
- ) correlated in time, and the correlation must again be given
A. Self-diffusion of a fluid parcel along the trajectories. The appropriate modification to Eq.

Lagrangian correlation functions in the form (2.7) is, therefore,
(ub(x,t)ut(x,0)) = (u(z(t|x,0) t)u(x,0)) are the simplest
objects one may try to calculate from the random velocity 5 4 (x.t).V1q(x.t +f d2vv(x— H=r(x.t
field introduced in Sec. 1. The starting point, to lowest order Lot utt)-V]aeat) yyx=yay.H=rix),
in p~1, and after sending the Kolmogorov scajeo zero, is

the following modification of Eq(2.6): [(?t+u(x,t)-V]r(X,t)+j dzyaf(x—y)r(y,t)

— Kk exp(—ydt])
UL(t)=4mCy  ed3— & .
k( ) Kol k2 (k2+kg)4/3

(3.2) _ f d2yh(x—y)£(y.1), (3.7
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where, fork<z™ 1,

t
S <5z(t|ro,0)>:f0d7[<uL(ro,T)>—<uL(0,T)>]:o,
Y= Pci/a 61/3k2/3, (3.12

Hk=|hk|2=87TP;>(P+;>)C§/§|;5/3(|<2+ k§)2’3. (3.9 because of homogeneity of turbulence. For this reason, the
separation process is described simply by
It is easy to show that also the field theory associated with
Eq. (3.7) is characterized by marginal interactiorsx., ] 91([Za(t[r0,0) = Z,(t]0,0)1[ Z4(tr0,0) — 24([0,0)])
=[)\;n]=[)\Hn]=[)\Gn]=0 and the considerations in Sec. Il :Daﬁ(z(t|r0,0)—z(t|0,0)) (3.13
extend to the present case.
The zero order of the theory leads to the following corre-with
lation function:

Kk, 47C,y @ pe il el D op(r) = f dt([ug(r,t) —uL (0 J[UE(r,0) —u5(0,0]).

= 3.9
K2 (k2+k%)4’3 o—p (3.9 (3.149

Ug(t)=

This tensor is easily calculated fromq4(r) for r=(r,0),

and the time correlation has a quadratic maximunb=a0.  expioiting incompressibility. Using2"d 6 sin?4sir?(x cos6)
Calculation of the Lagrangian correlation time leads to the:(w/Z)[l—JO(Zx)—J2(2x)] we find, in the limitky— 0

same result as of Eq3.2), with the substitutionp— pp/(p

+p), while smoothness of the time correlation eliminates Aa7CH% P

the logarithmic correction to the scaling of the Lagrangian Diy(r)= frm’ (3.19
time structure function. This structure function obeys, in fact,

after sending,— 0, the expected normal diffusion behavior, \ynere

L(x,t) —ut(x,0)|2) = 2Cyelt], -
<|u (X t) u (X )| > OE|t| a7/3= fo dXX_7/3[1_J0(X)_Jz(X)]20.265, (31@

with

- with J,, the Bessel function of the first kind, is evaluated in

COZC%APP Inp/p, (3.10 terms of gamma functions[31] using the formula
- Jodxx3,(x)=24{T[3(1+v+p) UT[3(1+v—p)]}.
) ) ~ From incompressibility we find, therefore,
the constan€, is O(p) and, as expected from the discussion
leading to Eq(3.6), diverges logarithmically fop/p— . g 7 Mol 4a7/3c;§/0|5
Daﬁ(r): _2+_ 5&[3_
r 3 r? p

B. Relative diffusion (3.17

27113

r 4/3_

Analyzing the transport of a cluster of particles requires ] )
consideration of time intervals, during which the space sepalVe want to study the asymptotics of the separation process
rations involved cannot be approximated as constant. Ove?f two particles in the inertial range. The procedure is stan-
these time scales, the short correlation time limit leads to &ard(see, e.g., Ref16]); we introduce the distributioR for
perturbation scheme, which treats the velocity field to zerghe separation at timet, which will obey the diffusion equa-
order as a white noise. tion (the summation over repeated indices convention is

We focus on the case of a pair of particles. We have tgddopted throughout the paper

study an equation in the form N

[ Za(t[10,0) = Z4(t[0,0]=Ug(ro,t) —Ug(O)

=U,p(2(t|ro,00— 2(t]0,0) €4(1), e
(3.1 P(r,t)y=t>f(t"7)=t">f(R). (3.19

and look for an isotropic similarity solution in the form

With (£,(t) £5(0))= 8,55(t) andU 4 to be determined. Due Equation(3.18 takes then the form
to the multiplicative noise nature of this equation, attention 12—
must be paid to the possible presence of drift terms arising §(9 (R.F)+ 4a7Cxq €
from the Stratonovich prescription implicit in its definition 2 @@ 2p
[30]. It is easy to show that this drift is identically zero,

either by direct calculation of the incremesi(t|x,0) fortin ~ This equation has an unphysical solution, which is divergent
the inertial range, or noticing that in R=0, and a finite one,

3,RY°R,drf=0. (3.20
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9pR23 with  (£,(x,1)£4(0,0))=6,58(x)6(t) and v obeying an
f(Ry=exp — ———==]|, 3.2 equation in the form
R F{ 8“7/3C&/§|51/3) 320 |
whose moments are [3t+V(X,t)‘V]qv(X,t)+f d?y y(x—y)q,(y.t)
(R")— f RITGR{(R) - f d2yh(x—y) (Y1)
0

= —(20) "X &(x,1) -V, (X)) =0 V2q,(X,1),

, (3.22 (3.28

f2—i/3) 3+(3n/2)
_3 ( 8“7/3C§§|61/3) r

2 9

3 n
"2

whereq, =V, -v, (-); is an average limited to the noige

z?,pd use has been made, in converting the advection by mo-
9€cular noise into a diffusion term, of olemma[30]. We
see(it is assumed that the limigp— 0 is already takenthat
there is a renormalization of the damping kernel

with T the standard gamma function.

From here, the expression for the particle space separati
is obtained in a straightforward manner; fgg-1t>1, indi-
catingr(t) =z(t|ro,0)— z(t|0,0),

— 10 243 ,CY2 )
<I’2(t)>:cet3, c= #, (3.23 Y— Vit ok?, (3.29
which leads to a cutoff for the velocity at the inverse diffu-
i.e., the space separation obeys Richardson diffusion. For tidve scale,
relative velocity, we have, from E@2.6), B i
B ", :(pCKol)3/4€1/40_73/4_ (3.30
([ur(ro,0—ur(0,01%)=2a°%C,e”Xr?3(1)), (3.24
We have then,

where

exp(— ak?|t])
. (Vk(t)ka(0)>=T)m(Uk(t)Ufk(O)),
asj= fo dxx ¥ 1—Jp(x) —Jx(x)]=2.149 (3.2 (K7, (3.3

and for small space separationsy,—0, we have a qua-

and, using Eq(3.22, for y,-1t>1, we find the normal dif- i X ) )
dratic behavior for the velocity structure function,

fusion behavior,

16a5/3a7/3Ci/§| ([orxrD =0 (60
L L 2 _F & R
,00—u(0,0]°)=cet, c= .
<[ur(r0 ) ur( )] > Ce c 3P o - . [1—J0(x)—J2(x)]dx

(3 26) =2C |62/3r27] 4/3

. Ko 7 Jo x5B3(x*3+(r/ 770_)4/3)

Passing to the smoothed out in time version of the velocity 1 _
field provided by Eq(3.7), is accomplished, as in the case of = —Cyo €227, 43 ?|Inr/7,|. (3.32

A A 4
7., by exchangingp— pp/(p+p). In Ref.[32], both a sub-

exponential behavior for the functiof(R) and Richardson  The transport of a passive scakii,t) will be described by
diffusion were observed in a DN@lirect numerical simula-  he equation
tion) of two-dimensional turbulence in the inverse cascade

regime. Based on the results of that paper, extrapolating ap- [0+ V(x,1)-V]0(xt)=aV20(x, 1)+ f(x,1), (3.33
plicability of our leading order expressions gnwould give
then (taking alsop—x) p=2. with f(x,t) a source term. An interesting quantity to calcu-

late is the fluctuation spectrum f@érin the casd is random

C. The role of diffusivity and the Batchelor constant in time and concentrated at large scale,

The dynamics of passive tracers, contrary to that of fluid 2e, kor<1
elements, feels the effect of molecular diffusivity. Due to  (f(x+r,t)f(x,00)=F(r)8(t), F(r)= o
finiteness of the turbulent correlation times, this effect does 0, Kor >0.
not consist purely of an additive noise contribution to the (3.39

tracer velocity. Indicating by the molecular diffusivity, the

passive tracer velocity will have the form We can thus considgf)=0. The equation for the steady

state passive scalar correlatioB (r)=(6(x+r,t)6(x,t))
V(X 1)+ (20)Y2&(x,1) (3.27  will then be, forkyr<1,
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(OO, D[V(X+T,1) —V(X,1)]- VO(X+T1,1)) whereug is the gravitational drift that we suppose constant
_ and uniform and/” is the fluctuation in the Lagrangian solid
=20V?0(r)+4e,. (3.35  particle velocity, which obeys the linear relaxation equation
Forr—0, the left hand side of this equation is zero; we thus vP(x,t)= Tgl[u(z"(t|x,0),t)—vP(x,t)]

obtain e,= (a/2){|V 0|?), i.e., €, is the dissipation of pas-
sive scalar fluctuations. Following the same approach as in
the preceding section, the velocity differeneg€x+r,t)

—v(x,t) is approximated by a white noise. From '#o
lemma, its contribution in Eq(3.395 will be an eddy diffu-

=75 TuP(x,t) = VvP(x,1)], (4.2)

with 75 the Stokes time(For a spherical particle of radius
and densitypp, in a fluid of densityp, and kinematic vis-
A . I, cosity v, we would have(2a?/9v)|1—pp/po|; we are dis-
sivity D (1), whose expression will coincide, foe> 7,1, regarding any effect from finite particle Reynolds number

B oot o e S romstosans are33) From o on we shall ently Lagrangan uanies
9 P P calculated on solid particle trajectories by the supers®ipt

ruled out with the arguments used in the preceding section. In general the noncoincidence of fluid and solid particle

The resulting diffusion equation will then read, trajectories makes the analysis of E¢61) and(4.2) a very
L — difficult task. The short correlation time limpg—oco, how-
3al9,3(zDa,g(r)JrZU@a,g)®(f)+4€e=0- (3.30  ever, allows us to proceed perturbatively in the fluctuating
part of the trajectory separatiomgt+ z(t|x,0)—z"(t|x,0).
For r>n, Djj is essentially a correction to the molecular The physical motivation for this is that, from E@#.2), ugt
diffusivity, and will read, from Eq(3.32), +2(t|x,0)— z"(t|x,0) fluctuates on time scale with veloc-
ity scale fixed by those eddies that have decay tirge
; Hence, forp large, the fluctuating part of trajectory separa-
Da(r)=f dt([vo(r,t) v (00 J[v4(r,0 —v(0,0]) tion remains small on the scale of these eddies. Furthermore,

when eitherugt> 8z(t[x+ugt,x), or yjy-1t>1, in other
rofpg 13 Mol g
S e e

1073 words, when eithe€¥2 et/uZ<1 or CZ2 et/uZ>p~2 (pro-
.

8p? vided p>1, one of the two conditions is always satisfieitl
(3.37) is possible to approximatg(t|x,0)+ ugt=2z(t|x+ ugt,0).
' To lowest order we have, therefore,

For n,<r, Djj is approximated by Eq3.17), the molecular U(ZP(]%,0),) = U(Ugt + 2(t|x,0),t) = U-(x+ Ugt,t).

diffusivity o can be neglected and E@.35 takes the form 4.3
s Sp?(, We obtain immediately the fluctuation amplitude of the ve-
0"+ §® =" —4a C U2 13, 413° (3.38 locity difference between solid and fluid particles at a given
713%Kol position. From Eqs(4.2) and (4.3) we can write,
The solution of this equation gives automatically the passive 2kt dr -1
scalar structure functiorf[ O(x+r,t)— 6(x,t)]%)=2[©(0) VP(X,t)zj —2J —Uk(T)EXF<——+ik'X)
—@(r)] in the inertial range fop: 7,<r<k, . This struc- (2m)°) —=Ts 7s
ture function scales like?® and can be written in the form (4.4
Be. 2 and from here we obtain, using E@.2),
%

([O(X+1,H) = 0(x,1) %) = — o= (339 ((va—Uy)(vg—Up))

1/2771/3°
CKolé

o dx
with the parameteB=3p/ a3 the so called Batchelor con- = 5a5U§f 275 . 38,pudn( 7 /I7s),
stant of the flow. As with relative diffusion, the case of a ! (1 T—Lx1’3) T
velocity field with smooth time correlation described by Eq.
(3.7) is recovered substituting with pp/(p+p). (4.5
where

IV. SOLID TRACERS: ONE-PARTICLE STATISTICS U2

Ug (4.6)

7s

We consider the simplest case of a linear drag. In the USZ(S_T,_
presence of gravityor of a constant external forcand of
the turbulent velocity fieldi(x,t), the solid particle coordi-

g : ! for rs<7_, is the velocity scale of eddies with lifetimsy
natez"(t|x,0) will obey the equation of motion,

anduy is the turbulent velocity defined in E¢.3). In order
) to proceed to next order, it iS necessary to calculate the tra-
Px,t)=vP(x,t)+ug, Zz°(0|x,00=x, (4.1) jectory separation,
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o Y 0 - eddy turnover time, but is longer than the lifetime of an eddy
Z°(t|x,00— z(t[x,0)=ugt+(1—e TS)J dr e"™su=(x,7)  of that size; hence, the solid particle moves ballistically with
o respect to the fluid.
t t—7r A small separation range<$S;, in which trajectory sepa-
- deTeXF< - T_S)UL(X’T)' (4.7) ration in the lifetime of an eddy is not a perturbation any-
more.

i ) ) . ) From Egs.(4.3), (4.4), and(4.7), we can establish a per-
We notice from this equation that the inertia produced part of ,;pative calculation scheme far® and vP. Notice that

trajectory separation does not grow indefinitely. _In other,ithin perturbation theoryP is a one-valued function of
words, if us=0 and to lowest order ip 1, there will be

andt, andv(x,t) defines automatically a velocity field for the
localization of solid particle trajectories around the fluid par- (x.t) y v

; . . L P solid particles. The separation betwegnand all the other
cel trajectories they cross at any given time; from BO7):  goqjeg of the problem, has the consequence that, in the

(1Z°(t]x, = ) = 2(t|x, = ) |?) ~ (U778) *~ Cy o167y °75. present case, the Weinstock approximation is eXadi.
We thus introduce the localization lengé, What happens is that trajectory separation is produced
mainly by eddies of size=S, for which trajectory separa-
S= c&’gl?lle’ka 3. (4.8  tion is a perturbation. This has the consequence, in particular,

that the Weinstock approximation applies also at scales

What happens is that the velocity differende—uP obeys a  <Si for which trajectory separation is not a perturbation at
relaxation equation with a forcing that is a time derivative;all- For dominant gravity, i.e., whems>us, trajectory sepa-
from Eq. (4.2): (d/dt)(vp_up)+T;l(vp_up): WP, The ration is produced ma_unly_by _the grawtagtlonal dmfg_ and
frequency spectrum ofP— uP does not have, therefore, the the Weinstock approximation is automatlcally satl_sf|ed.
small frequency singularity necessary for I'on time aiver— We can calculate at this point the time correlation for the
gence Tﬂe Ioc)élizat?on Iezgﬁ Wil ap)é)ear o glay a fun- solid particle velocity and adopt the approach followed in
damental role in the production both of concentration quc-RefS'[35’3a; we can thus write, using Eg4.7),
tuations and of _correctlons.tcilthe veIocn_y correlathn t'me'<ulp(0,0)uf(0,t)>
(Of course, to higher order ip™ -, the relative separation of
fluid parcels sets in and localization is destroy§dpecomes d’%k d?%p
then, that part of trajectory separation which remains after =j 5 —2<Ub<(0)utp(t)
the Richardson diffusion contribution is subtracted Jout. (2m)” (2m)

In the gbsence of gravity, beside the integral sc_:ale _depen- xexdip- (z°(1/0,0)—z(|0,0)])
dent localization lengtls,, three more scales, which, g
<7, are purely inertial, can be obtained combining the f d’k d?p 5°7[J]

crossing time of an eddy by a solid particle, the eddy life- ——eXpip-Ust) v ,
time, ar?d the eddy turngveeltime. Wephave the Sasf gn (2m)? (2m) 031a(0)83ps (1) I=pJ,
eddy whose lifetime equalss, ys-175~1; the sizeS; of an (4.10
eddy that is crossed by a solid particle in a timg, ug

~S./7g; the sizeS; of an eddy whose lifetime equals the where

crossing time by a solid particl& Y5 1~ Us. Summarizing, s
Z[J]= < exp( |f ZJ dtu's'(t)~.]s(t))>
S=pYPCI 2 g = plACT 12,32 )
[0} ! [0} !
e L[ arar [ £
S=p 3CYi V22, 4.9 —Nexp T drdr (277)2
rF;gg;fq. (4.9, we identify the following sequence of % 34 7)- UL(r— r’)-JS(T’)> (4.10
A large separation range>S, in which the fluid velocity
u” varies slowly on the scale of the relaxation time. is the generating functional for the field and
A first intermediate rang&S<r<S; in which the fluid
velocity uP is a fast variable, but stillyg is short compared 0, 7>t
with the crossing time of an eddy of sizghence, Eq(4.2) o t— 7
has the form of a Langevin equation with a noise'u” of Ji(1)= —ex;{ - —) o<r<t (4.12
constant amplitude on the scale of this crossing time. The s
crossover scal& will play an important role in the determi- [1—exp(—t/Tg)Jexp(7/7g), 7<O0.
nation of the degree of nonergodicity of the solid particle
flow (see Sec. VL Substituting back into Eq4.10, we obtain, after introduc-

A second intermediate rang8,<r<$S, in which the ing dimensionless variables=t/75, ug=Kkorsug, and y
crossing time is shorter than both the Stokes time and the- 75y, = 75/(27.),
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2 oo
(uz(0,0uz(0))= % f XX 3o (g (X — 1)Y20) + Jp(Ug(X— 1) ¥2)]
1

2 —ptyB ¢

S Xx—1) (= d — e "W —e

xex;{—ytxm—)/( 2 ) 413 4 13 (1_et_ — 13 ) :
2p 1y "1+ yytB) 1-vyy

(4.13

We see from this equation that decorrelation of the fluid vesweep from the velocity differenag;+v—u and one at long
locity sampled by a solid particle receives three contributime associated with eddy decay, where E8.10 holds
tions: one from the gravitational dritg , one from the eddy [22]. The transition between the two ranges occurs at
decayyx¥3, and the integral term in the exponential, which

comes from inertia produced trajectory separation. This last

term is peculiar, in that it saturates to a constant for long max(uZ ,u?)
instead of continuing to increase indefinitely. This term is the ~—— e (4.19
argument in the exponential expression #J] [see Eq. p°Ckol€

(4.12)], which is essentially
pp:([2°(t|0,0— z(|0,0)][

with the drift ug subtracted out, and witph the wave vector
entering the integral of Eq4.10. But, from Eqgs.(4.7) and
(4.8), we saw that this expression saturates-ate. In con-
sequence of this, for long enough times, the latdpehavior
of the integrand in Eg4.13 will be dominated by the value

—z(t[0,01), (414  From Egs.(4.5 and (4.6), for dominant inertia, i.e.ug
>Uug, this crossover time is much shorter than while, for
dominant gravity, i.e., foug>ug it is possible that sweep
dominates for all inertial time scales; for this to occur, it is
necessary that the crossing time of a large eddy by the par-
ticle be less tham_, i.e., koug7 >1. For dominant inertia

at saturation of the inertia produced term. the crossover time2/(p3C¥2e)~p 27 s just the lifetime
of an eddy of size5, [see Eq.(4.9)].
A. Velocity self-diffusion For dominant gravity, the exponential term in Eq.

4.13 can be neglected. Fot<min with
Inertia causes two ranges of time separations in the cof13 9 (76,7) G

3/2
relation (u?(x,0uf(x,t)): one at short times dominated by — (6/p %) (ug/un)®r ~ug/pCide, we find

2
([uf(0)—uf(0,07]? Z—J dxx 1 - Jg(ugt(x—1)YH— Jp(ugt(x— 1))1/2]~—a5/3CKo|€2/3(UGt)2/3, (4.19
|
where a53=2.149 [see EQq.(3.25]. The time ¢, for ug eyt
<u,, is the lifetime of vortices whose lifetime equals the l—e ' ———p = 'yyl/3t2 (4.17
crossing time by a falling particle; fop=0(1), 7¢ coin- 1-vyy

cides with the eddy turnover time of vortices with character-
istic velocity ug . o . .
For dominant inertia and short enough times, only the lasBubstituting into Eq(4.13, we are left with the following

piece in Eq(4.13 will contribute and will be quadratic in; ~ €XPression:
if re<7,

Y(x=1) (= dy
4p?  J1 y(1+yy*R)

2 TEDy [ ]
us (= 3y°t°xIn
:—Tf dxx 43 1—exg -7
3Jo 4p2
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Using [odxx *91—exp(—Ax)]=3I(2/3)AY3, we obtain, (=
thereforg, p=([uf]? 1f0 dt(uf(0,0uf(0t)).  (4.20
([uf(0)—ug(0,01%)=3T(2/3)[3 In(7 /75)]** To lowest order, any discrepancy between the Pifsb-

o ability distribution functiongfor ut andu® can be neglected
XCroi€™(UsH ™ (419 and we have[uf]2)=([ul]?)=2u2. We begin by analyz-
ing the case of dominant inertiag=0. Taylor expanding in
Comparing with Eqs(3.10 and(3.14), we see that inertia  p~! the integrand in Eq(4.13 and substituting into Eq.
will dominate if ug>ug andt<p~?rs. As predicted in Ref.  (4.20), leads to terms that diverge when integrated.ifhis
[22], at short times, the time structure function tdf has a  indicates that the time independent part of the inertia term in
subdiffusive behavior with exponent 2/3 both for dominantEq. (4.13 dominates the integral. We thus Taylor expand in
ug and dominantis. What happens is that at such short timep~1, only the time dependent piece of the integrand in Eq.
scales, the particle crosses at constant spegdember also, (4.13), i.e.,
in the inertia dominated case, th§{>S;) vortices whose
velocity field is, in the limit, basically frozen; hence a Taylor - Y2(x—1) (= dy
hypothesis applies, and time correlations coincide with their exg — ytx3+ f

2 4131 4 /3
spatial counterparts. 2p 1y (1+yy™)
- e*}/AIles_ ei?
B. Velocity correlation times x| e+ W (4.2

Starting from Eq.(4.13, we can calculate the correlation
time 7p for the fluid velocity sampled by a solid particle, to obtain

Px=1) (=  dy )
27 J1 y"H(1+ 9y

1 . ;(x— 1) foody 1+?x1’3—;2y1’3(x1’3+ y1/3)

Yx13 202 J1 T yM1— 2y (14 yx ) (x Y3+ y 1)

and we see that the integral inof the O(p~2) on second line of Eq(4.22 is dominated in fact by a saddle pointat

= (k/ko)2~(p/;)2, ie., atk~S|_1. Combining this result, with the fact that the integrands are peaked &t Eq.(4.22) will
take the form

2
o0 u e}
f dt(uf(x,0uf(x,t)) = — f dxx4’3exp(—
0 6 )1

(4.22

2 By 23
% ugp (= VX [ dy 1 YXE [ dy
dt(uf’(0,0uf (0t =—TJ dxx ¥Bexg — — — — f ———|. (4.2
Jo (u1(0,0u(0)) 6 )1 2p2)1 y4/3(1+7y1/3) 7x1’3 202 )1 y4/3(1+yy1/3) (4.23
|
We thus obtain, for the deviatior,— 7, and fluid particle trajectories should have led to a faster,
rather than slower, decorrelation rate.
TP _ T3 —4i3 2 In the case of dominant gravity, as expeci&d, 36|, there
T LBy O ), (4.24 is always a decrease of the correlation time. In place of Eq.
(4.22, we have
where
(2 1 ;+_2+_3| 5 1% s fo dt(uf(0,0uf(01))

u_2I_ o] o] S R
_ __T —4f _ 12
It is to be noticed that the fact@( y) is always positive, i.e., 6 fo dtfl dxx* L Jo(Ug(x~1)"1)

the correlation time for the fluid velocity seen by the solid o o L

particle is longer tharr, . Following the argument in Ref. +J,(ug(x—1)Y?t) ]exp( — ytx13), (4.26)
[37], this would be expected in the case of a velocity field

with statistics defined in an Eulerian frame, and is exactly thavhich, using [5dxJ,(8x)e” = B""(a?+ %) Y4 (a?
result obtained in Ref[38]. In the case of a Lagrangian + 82)¥?—«]” [31], leads to the expression for the correla-
statistics, it is not clear whether the deviation between solidion time,
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2 13 2 12 ,
a ui e (1)
{ (—)1/2) + 1‘| ] . <u1(0,0)ul(01t)>: Ejl dXX 4/3ex%: _ tX1/3_

e ZJ’w dx( xR

7 3Jo x*B\ ugx= 1)) ||| ug(x—1 2p?
. L . . . 3t— ” —2 T3
We can obtain limiting expressions for this ratio, when the X| 5 —1+ | dyy “exp(—ty™) | |.
crossing time koug) ~* is much longer or much shorter than !
the integral timer_, (4.29

2 . . . .
™ |1+ §(quoTL)2|n Uckor , koUgm <1 We start by calculating the Eulerian correlation time

Z= (4.28

TL 2(ugkor) "t KougT >1. —2
Te=U7 7| dt{u(x,t)-u(x,0)). (4.30

C. Eulerian correlations
Contrary to Eq.(4.13, it is the linear int, O(p~?) term in

Eqg. (4.29, which, at fixed long enough dominates forx
—o0, The same reasons leading to expand(B®1) suggest
that we must now expand

The limit 7s—, corresponding to the case of a particle
with infinite inertia, leads, from Eq4.2), to a particle ve-
locity, which, in the absence of gravity, is identically zero.
HenceuP(x,t)=u(x,t) and the time statistics for the fluid
velocity seen by the particle coincides with the Eulerian tur-

bulent statistics. In this regime, the dimensionless units in- (x—1) I P s
troducgd for Eq(4.13 are not appropriate anymore. Rede- ex;{ 2p? 1 1 dyy “exp(—ty™) || (4.3]
fining t=w,t, Eq. (4.13 takes the following form, after
writing exp(—t/79=1—t/7g: Instead of Eq(4.22), we find
2 2 -1
o ust (= (x—1) 3(x—1)
dt(uy(0,00u; (0Ot =—J dxx 3| 1+ x84+
fo (ux(0,0ux(00)= ¢ | » 07
-1
(x—l)fx 3(x—1)
- dyy ?| x¥+y2By — 21|, 4.3
202 ) yy y 4,72 (4.32

All the terms involving factorg 2 lead, after integration, to heavy particles. The origin of this lies in the opposite order-
an O(p~2) result, except one that leads to &{p %Inp)  ings rg<t and rs>t, on which the Taylor expansions of
term; the integral in Eq(4.32 will read, to leading order in Egs. (4.21) and (4.31) are based[More precisely, forrg
P, >p7_, we haveky,S>1 and the saddle point in E.22
disappears.

As a last exercise, it is possible to calculate the sweep
produced decay in an Eulerian two-point two-time structure
function in the form

jl dx [X75/3—p72X71(1+p72X2/3)7l]+O(p72)

3 3lnp
25— 5 (4.33)
p S,,(r,t)=<[u,(r,t)—u,(O,t)][u,(r,O)—ur(0,0)]).
4.3
We obtain then the result for the Eulerian correlation time, (4.39
TE 2Inp From the discussion leading from E.14 to Eq. (3.17),
r_,_zl_ e : (4.34 one finds that the structure function in Eg.35) is obtained

by inserting a factor P1—Jo(rx) —J,(rx)] in the integrand
which is shorter thamr , as expected from the fact that the of Eq. (4.29. If one cons_iders shorter time and_ space sca!es
velocity field statistics is defined along fluid trajectories, and Kof <1, t<<7_, the leading cause of correlation decay is
sampling at fixed space position should lead to an increase #Wweep, and theéx'? in the integrand of Eq(4.29 can be
the rate of decorrelation. Comparing E¢4.28 and (4.3,  disregarded. Again because of shortnesd/ef, one can

we see therefore that there is a transition from a correlatiofaylor expand expt ty*) in the same equation and the final
time longer thanr_ for light particles, to a shorter one for result is
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d
S0 =20 1% | "o 13600 - 3,001 GO =01 (1) =1 5(0)])=2D (1) (5.1

u3t?x?
Xexg — .
6r2
The term in the exponent B(t/T,-1)2, with T,-1 the sweep

time at scaler. Hence, ift>T,-1, it is possible to Taylor
expand the Bessel functions and the result is

A finite level of concentration fluctuations, in the absence of
(4.36 external sources, is associated with a finite divergence of the
diffusivity tensor:9,D ,z#0. If this component of the dif-
fusivity tensor is small, it is possible to proceed perturba-
tively: D,z=D9+D{), P=P@+p®) with 4,0{)=0,
P© uniform andP®(r)«([ 4(r,t)— 6(0t]?); the equation
for the fluctuation amplitud®*)(r) would read, therefore,

S, (r,t)~S,(r,0) f dxxPBexp — (t/T,-1)%x?] DQa,0,PM=—Pg,5,00). (5.2
T, -1 %° The procedure to determiri2, ; is similar to the one leading
~S:(r,0 t ) ' (437 1o Eq. (3.17. From Eq.(4.4 and the relatiorr(t)=vP(x

+r,t)—VvP(x,t), we obtain
i.e., a power-law decay of the structure function for times

longer than the sweep time at that space separation. —lim J dtlf J’tl dTlftZ dr,
T—>oo -0 Tg J—o Tg
V. SOLID TRACERS: CONCENTRATION FLUCTUATIONS
t1+ t2 T1— T2 p
Because of inertia, the particle velocity fiel¢x,t), con- Xex;{ - T—s) Sap(l171,72)
trary tou(x,t), does not preserve volume. Physical intuition
suggests that particles that are denser than the fluid, will tend (5.3

to concentrate near the instantaneous hyperbolic points of the ) i o

flow, and to escape from the elliptic onEk9,39. For this with S the time correlation of velocity differences along
reason, a distributiod(x,t) of solid particles, in the absence Solid partlcle trajectories,

of external sources, will be characterized by finite amplitude

fluctuations superimposed to a uniform mean concentratiorS,s(Ft1,t2) =([uf(r,t;) —uf (0t J[uj(r,to) —uf(0t,)])

field 6. These fluctuations are expected to have a correlation = 2T (UP(rtOUP(r t-)) = (uP(r .t uP(0t
time of the order ofrs and a correlation length determined in [{Ua(r ) U5 12) = (Ua(r ) U5(02))].
consequence. We are going to neglect any effect of gravity (5.9

and set from the stattg=0. We will also limit our analysis _ _ _ . .
to the case in which is in the turbulent inertial range, i.e., We notice that, if we approximates, ;(r,t1,t2) =S, 4(r,t;

we considerrs<r_ (more precisely,7s<p 27.). In this  —t,), sinceaasbﬁ(r,tl—t2)=0, we would obtain from Eq.
way, all nonuniversal effects associated with the large scale&.3) a divergencelesB ,4(r). We have to take into account
of the flow are eliminated from the problem. therefore the effect of trajectory separation described in Eq.

The lengthS is crucial to the two-particle statistics, in (4.7). Proceeding as in the case of the one-particle statistics,
that it gives the scale below which solid particles move bal-we arrive at the following modification of E¢4.10):
listically relative to one another. In facg. fixes the cross-

over scale to ballistic behavior, only for the relative motion 2 g2

of solid and fluid particles; the resulting picture is given by (uz(O,tl)uZ(r,t2)>= —f ——expip-r)

pairs of particles, separated By, moving ballistically over (2m)? (2m)?

scaleS.. It is easy to see this: iA,v is the typical relative 827[ 3]

velocity between two solid particles at separatiorand X ,
12 (U3 : : 0Jka(t1) 6dpp(ta) [_ 5

Au~Cig (er)* is the corresponding value for the fluid Pty

velocity, one will have forr<S, from Eq. (4.2: Av (5.5)
~(7sy,-1) YA, u; exploiting the fact that the characteristic '
time of variation forv is 7g, the conditionrsA,v~r, gives

thenr~§;. where
The concentration correlatio® (r)=(6(r,t)6(0})) is - — -
proportional to the equilibrium PDP(r) for the separation Jsrtyt,(7) =g (1) — €13y (7) (5.6)

of a pair of solid particles advected biyx,t). The separation

r(t) obeys an equation in the formm(t)=vP(x+r,t) andZ[J] andJ; are given in Egs(4.10 and(4.11). Carrying
—vP(x,t) [we use from now on the shorthand(t) out the wave vector and time integrations in the definition of
=67"(t|x+r,0)], and, forr>S;, the separation process Z[J] and using Eqs5.6) and(3.1) leads, after some algebra,
takes a diffusive nature, to the following expression for the velocity correlation:
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(UE(Ot)up(r,t))=

Cuol€?3 (=  kdk
f explikr cos¢)
0

™ (k?+Kk3

XE exp(— yiti— t2|)f d‘l{ aBCOS-Zd’“L( Oap— aﬁ)SIn2¢

r

— » {F(s,tq,ty) + G(S,tq,t)[Jo(sr) +Js(Sr)COS sds
X ex —CK0|62/3’T§k2J' { ( 1 2) ( 21 2)[ 0( ) 2( ) 2¢]} , (57)
0 (k§+ )31+ ys7s)
|
where ¢ is the angle betweek andr, finite divergence of the correlatiqu}(0.t;)up(r.t5)), is the

¢ dependence of this factor. The remainigigdependence,

F(s.t1,t) =f(s,t) +1(s,t2), contained in the second line of this equation, is simply the

_ factork, k, exp(k-r) arising in the Fourier transform of Eq.
G(s,t1, 1) =1(s, 11~ 12) =F (S, 11, 1) (5.8 (3.1), and would give by itself zero divergence.
and The argument of the exponential in the last line of Eq.
(5.7), for fixed rg/7_, is O(p~?), so that we may try a
e ® vltl g~ Itl/7s Taylor expansion. However, as it happened with E4<21)
f(st)=1-e 5= 1_—737.5 (5.9 and(4.31), the resulting integrals ik diverge. We therefore

keep in the exponential the time independent piece of its
The effect of trajectory separation is contained in the last lineargument, and expand the remnant, which, to leading order
of Eq. (5.7). We see that the contribution, which leads toin p, gives the following expression:

foo Cyo1€2P72k?sds

fw G(s,ty,t5)Jo(sr)sds
0 (K5+s)M3(1+ yerg) | Jo

(K3+5)*3(1+ yqrg)

1— Cyo €2?72k%cos 2p exp{ -

3C 0|62/3 2k2
2k3"

(5.10

© G(s,ty,tp)Jx(sr)sds
=1— Cyo1€272k%c0s 2 ex f (2 1,t2)Jo(SI)
0 (k0+52)4/3(1+ ')/S'Ts)

plus terms that would lead to a divergence free contributiomuﬂgn(o,tl)uZ(r,t2)> and would disappear from Ed5.2).
Substituting into Eq(5.7) and then back into Eq$5.4) and(5.3), we find, after carrying out the time integrals and the integral
in ¢,

8C32 er
D{)= —KolE'S Sf x~ Ydxexp —
P 0

2.2) o
dyy *p(y)| 1- =
2 “o YY) 2[1+<x/y>2’3]]

1 1 ol g
X| Sap| 5d0(X) = I2(X) + 5 34(X) | = 2 J4(X) | (5.1
and it is possible to see th@tffg is given by the same expression valid for a fluid parcel, i.e., by(&4.7),
bay CHeP Trr, 7 Mol
(0) 7/13%~Kol a3 B " _la'p
Dag(r)= ; r 3[ 2 13 Sup et (5.12

The physical content of the expansion leading to Efsl]) and (5.12 can be clarified, noticing that, in a way perfectly
analogous to Eqg4.10 and(4.11), the generating functiona[ J] entering Eq.{5.5 can be written as

. Lo Lo kk , R
ex |k.fdt[u (003, (H—u(r,H) I, ()] ] ) ~ex —7f dtdt’ [U(Ot—t")[J,(1)Jy,(t") +I () Iy (t)]
—zu<r,t—t'>11<t)12<m]] :
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The argument in the exponential is in the fomkz(si(tl

—t2)+S§(t1—t2,r)) with S, , the one- and two-particle

contributions to trajectory separation, witl$;(0)=0,

S(%)~S, and S,~Cg3(er)3rs. Substituting into the

definition of D .5 gives then, using<S,
D”J dtf kdeke_kzsi(t)_“/kt[l—exp(—kzsg(t'r)
—ik'r)]~f kdkUgyg H(1—e %)
" J Ak Uy "Creo(er) 2™,

which, using Eq. (4.9, is ~(CY¥24e¥¥p)[r*?
+p?SH3(r1S)?R]. Thus, the origin of thed™ in the two-
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PM(r)= —pZP“’)(E)MS J " dyy "B () —ya,B(y)
S /s y

r

+D(y))—-D(y)]

4/3
Si) . (5.19

3 -
=_ —2p(0) -
2PP D(OO)(r
Using Eq.(5.19 and the limiting form for the confluent hy-
pergeometric functioM (a,b,—2z)=[T'(b)/T'(b—a)]z ¥ 1
+0(z 1)1 [40], we get the final result,

particle contribution to trajectory separation is confirmed, to-

gether with its being generated at thgdependent scal§, .
This is of course confirmed by direct analysis of Es,.11);
the integral is dominated by=x/r~S; ! and we obtain, for

r>S,
D 2543 1/3

D(O) - (rSI)2/3

23 7S
L

(5.13

Thus, forrs<p 27, DP<D® and Eq.(5.3) applies.

Using the relation  [odxx e~ @3, (x)
=[I'(7/3)/2a™'(5)]M(7/3,5~1/(4c)), with M(a,b,x)
the confluent hypergeometric functiddQ], we obtain, in
general, from Eq(5.12),

— Il g~ A
D{)=4pasCi5e™ .’3( r—zﬁD<r/s>+5aBD<rls>),
(5.19

where we can write

B 22’3r(7/3)( r2 )7’3 (7 r2)

PUISI== 5 |62 3% 69

B= f “dyy 583,(y), (5.15
0

with c=1 for r>S andc=1 for r<S;; D will be shown
not to contribute to the concentration correlations.

We can now calculate the probabili)(r). Substitut-
ing Egs.(5.13 to (5.15 into Eq. (5.2, after a few manipu-
lations, leads to

o o S 4/3 I,
an7’3aﬂ°<l>=—p2rp<°>(§') FB(MN+D(r)

+ia,125(r_)+f>(r_)) , (5.16
r

wherer=r/S . Hence, forS<r<§,

o o S 4/3
O(r)=6? 1+,8p2(7) } (5.18
where
—  3BL(73
=— =2 5.1
P 2%%07,4'(8/3) 519

In conclusion, we have a range of separatiSpsr<S;, in
which the fluctuation correlation grows with a power
—4/3, to reach amplitude-p? atr~S.

The picture that arises is one of concentration fluctuations
produced at scalg, by compressibility of the solid particle
flow, and then transported to small scales and amplified by
the incompressible part of the flow. The process is different
from that of a passive scalar forced at large scale, due to the
derivatives in the source terfand, in fact, the scaling expo-
nent is different; compare with E¢3.36)]. This source term
is basicallyV?D™M)(r), with DX)(r) saturating at a constant
for r>S, and going to zero in the opposite limit. From here,
ther ~#®scaling of Eq(5.18) arises by dimensional analysis.

What happens when<S? At such short distances, the
separation process is ballistic and we cannot use a diffusive
approximation anymore. In Rdf24], it is suggested that the
correlation buildup should stop only because of discreteness
effects or because of the Brownian motion of the solid par-
ticle. Actually, extrapolating the results of the present paper
to the real turbulence regime=0O(1), there is good reason
to think that, forrg> 7, , this buildup could stop much ear-
lier, and precisely at~S;, which, for p=0(1), coincides
with the size of vortices with eddy turnover timg.

At separations belovs,, Eq. (5.18 ceases to be valid,
and full analysis of the distributio®(r,A,v) is needed. A
singularity of P(r) atr=0 would require focusing ofA,v
alongr for r<S;; the mechanism is sketched in Fig. 1. This
means thaP(r,A,v) itself should develop, as—0, a sin-
gularity at, where#d is the angle betweena,v andr. The
necessary trajectory focusing can be produced only by the
compressible part of. However, forr<S;, the production
term for the compressible part gfcan be estimated directly
from the second term in E@5.10), to beO(p~?) relative to
the rest, and is able to act only for a time in the ballistic

region. HenceP(r,V) must be singular before this region is
reached. However, for>S;, where the diffusive approxi-

mation works, the asymmetry d®(r,v), associated with
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compressibility of the flow, can be estimated from which differs from the analogous equation fdr because of
(0o gV v ) O~DIDO=0(p~2% so that singu- the non-volume-preserving advection tenmVu®. From
larities are not expected Iﬁ(r,V), for =0 andr=S, either. here we can carry on standard field theoretical perturbation
The conclusion is that a plateau f&r(r) should be present theory, either by the Martin-Siggia-Rose formali$@v], or

atr<s,. working directly with Eq.(6.1). The building blocks of the
diagrammatic expansion are shown in Fig. 2, and are the
propagatoiGy .4,

VI. SOLID TRACERS: ERGODIC PROPERTIES

One of the consequences of the compressibility of the P [t KoKg o
velocity field v(x,t) is that the ergodic property is not satis- Craplis(t) = J_dequ_ ndt= T)]VUKB(T)'
fied anymore: velocity moments calculated along solid par- (6.2)
ticle trajectories differ from those obtained from spatial av-
erages. As mentioned before, physical intuition suggests thafe correlatotU{ A(),
solid particles should privilege in their motion certain re- “
gions of the fluid with respect to the othdirsamely, hyper- K —3
bolic with respect to elliptic regionslt is difficult, however, UP (t)= Dap 4mCyol€ exp(— ydt)) 6.3
to translate this into a statement on the form of the PDF for K8 k2 (K2+k3)*: “ '
the velocityu®.

We have at our disposal the equations satisfied by thgnq the vertex®
velocity field uP. It is possible therefore to calculate its mo-
ments and to reconstruct its PDF. We consider the case of
zero gravityug=0 andrg/7_small. As in the analysis of the Fkaﬁyug’ﬁu;(t)zi)\sﬁgay5(k+ p+ s)f
concentration fluctuations, all nonuniversal effects associated
with the large scales of the flow are thus eliminated from the N
problem. From definition ofi” and Eqgs(4.1) and(4.2), we ><exp< — _) Usy( T)‘?TUSB(T)'
obtlain the following set of equations, valid to lowest order in 7s
p (6.4

kapBy

t
dr
o0

_ where the coefficienh=1 is introduced, as in Eq2.15),
[diFu(x,t)- V]UP(XIHJ dy?y(x—y)uP(y,t) only for the purpose of book keeping. To lowest ordeiin
the correlations for the fields”(x,t) andu“(x,t) are trivi-
ally equal. To higher orders, differences arise, which would
not lead, if V-U=0, to differences between the one-point
PDFs foru® andu® (see also Refl41]). In our case, this is
not so, and the difference between the moments of the two
WP(x,t), PDFs can be calculated in perturbation theoryQto\"),

=f d?yh(x—y)&y.1),

G(X,t)zup(x,t)—vp(x,t)z fi drex;< _ t; 7)

S

(61) d2k1 d2km

(2m?  (2m)?

(Ui (1)U (1)™,
(6.5

(wymo= |

2r

FIG. 1. Sketch of the behavior of particle relative velocities
inside a domain of siz®R<S;. Particle 2 moves with respect to
particle 1 at constant velocity. In order for the particle density to
diverge ag —0, it is necessary that the distribution of velocities be ~ FIG. 2. Feynman diagrams for the propagaBy,; (), for the
peaked too at=0. correlatorUkPaB (b), and the vertex'y,, (C).
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where(uk (1) - -uy (t)>(”) is the sum of the Feynman dia- and this expressmn should be substitutedhfan Eqgs.(6.1)—

grams W|thm outgomg velocity lines and vertices. Because (6.3). Fork§>1, vy is just the inverse of the crossing time

of symmetry under space reflection, the lowest-order contriof an eddy of siz&k™ . In this largek range, the appropriate

butions aréD(\?); the corresponding diagrams are shown inscaling for the frequency should be, instead of the one pro-

Fig. 3 and lead to corrections to the velocity second andided by Eq.(2.17), which leads tdA]=0, the following

fourth moments. In order to check for the presence of diverone:

gences in loop diagrams, we carry on power counting on Eq.

(6.1). Rescaling space and time as in Eg8.16, we find

[A]=0, implying the possibility of logarithmic divergences.

Now, a perturbation expansion Mof Eq. (6.1) ceases to be [t]=1, [N]=—-[u]=—3. (6.7

sensible at scales below the leng@hdefined in Eq.(4.9).

From Eq.(4.13, the effective decay rate for the field’

appears to be The change of scaling in" is therefore sufficient to regu-
larize the divergent diagrams, providing an effective ultra-
violet cutoff atk=S .

P_ Y kS§<1 (6.6) We calculate explicitly the loop diagram in Fig. 3, and the
Y ugk, kS>1, ' corresponding correction tgu®)?),
d’p t2 Ltty—7—7
uP)? (2)=J dt dt dT d7' exp( titty) - —m——
((u")) (271_) (277 1 2 1 2 Vk( 11+1) T
X6 B& 072 ysﬁ[upyﬁ(Tl_TZ)Usaﬂ( )+Upy,8( tZ)Uscyé(tl_TZ)

+UD (1= ) UL s(71— 1) + UD, st —t)UE (71— 72)],

wherek= —p—s. The time integrations can be carried out at once and, after some algebra, we reach the following result:

d2p dzs s'yp(pi 3)2
(? (Z)ZZJ - o7Vt ¥pt e+ TS
s (277)2(277)2<yE+y,ﬁ’+ys><yk+ys+Ts Diybtrshyfpz| PO KRS
PS % e s
T Pt Ty T s ), 6.8
52 ’)’SP‘FTgl(%( Ys S) ( )

whereU,=U,,.(0). As predicted in the discussion leading enough for the particles to be unable to respond to their
to Egs.(6.6) and(6.7), substitutingy”— vy would lead to a  velocity field, but still sufficiently slow for trajectory separa-
logarithmically divergent integral. Comparing with §4.9),  tion to be considered a perturbation. To find the leading be-
we see that this integral receives contribution from wavehavior in&‘l, the integral can be rewritten, after the change
vectors in the ranggS™1,S7'], i.e., from those eddies fast of variablesy=(g12rs) "%, z=p/q, in the form

a dz sif¢ N —
2 (2) — __ (23 2/3 213
<(U > 167 3 2_[ J’ J’ -2 y (p2/3+ SZ/3+ k2/3)(k2/3+ SZ/3+ y)(p2/3+ y)k2’3 2/3 (p +87k +y)
yCOS¢ —3 o 2
+§2,3+y(s +kT=y) [ +0(p ), (6.9
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o =

FIG. 3. Feynman diagrams providing the lowest order correctio
to ((uP)?) (@ and((u®)*) (b).

where k=(ps) "%, p=(p9 %, s=(p9) V% coss
=p-s. We obtain then the final result,

ninp ,

((UP)AP=—ug, (6.10

p

where
— 3 [em »dz 23sirt ¢
“8xlo 07(z+z*1+2cos¢)l’3
1
(242 142 cosg) P+ 7B
N CoS¢
2R+ 773+ (z+ 271+ 2 cosp) B

~-0.32 (6.11)

is evaluated by numerical integration. The correction to th

PHYSICAL REVIEW E 66, 056304 (2002

time, and to the rate of eddy velocity decorrelation at times
much shorter than the eddy lifetime. A quadratic maximum
(at leas}, at time separation equal to zero, is necessary for
C, to remain finite.(An exponential time correlation, for
instance, would not satisfy this conditipiThis sensitivity on

the short time behavior of time correlation was not observed
in any of the other transport processes considered in the
present paper.

(i) The relative diffusion of a pair of fluid parcels, exhib-
its (again as it shouldRichardson and normal diffusion be-
havior, respectively, for coordinates and velocities. The PDF
for relative separation is a stretched exponential with expo-
rhent% [see Eq(3.2])] and it is possible to express the uni-

versal constants andc entering, respectively, coordinate
and velocity dispersion, in terms of the parameterPre-

cisely, c=0.74822/p% and ¢=3.03TY%/p [see Egs.
(3.23 and (3.26]. For the Batchelor constant, we obtain
instead[see Eq(3.39] B=11.3%.

(iii) The correlation timerp for the fluid velocity sampled
by a solid particle has a behavior consistent with previous
analysis neglecting the structure of the turbulent inertial
range[17,38. Values of rp/7_, above unity are found for
dominant inertia and g7, with 7p/7 —1
=0((rs/pm)*?) [see Eq.(4.25]. On the contrary, in the
case of dominant gravity;p /7. <1 irrespective of the value
of the ratiou/ug between the turbulent and the fall veloc-
ity; specifically [see Eq. (4.28], we find 7p/7 —1
:O((UGkoTL)Z) fOI’ UG<UL1 al’ld TP/TL:O((UGkoTL)_l)
in the opposite case. For short times, the expected sublinear
behavior for the fluid velocity along a solid particle trajec-
tory is found: (JuP(x,t) —uP(x,0)|?)~ (euat)?3 with A
=G,S depending on whether gravity or inertia dominates
[see Eqs(4.16) and (4.19)].

(iv) The Eulerian correlation timeg (and by continuity,
dgherefore, alsorp, in the regimerg> 1) is shorter than its

velocity amplitude is negative. In the presence of inertialagrangian counterpart, withg /7 =1-2p~?Inp [see Eq.
solid tracers prefer therefore to lie in regions of the flow(4.34]. Sweep produces a power-law decay of correlations

where the turbulent velocity is smaller.
Extrapolating Eq. (6.10 to p=0(1) suggests that

between velocity increments in the fornS, (r,t)
=([u,(r,t)=u,(0,t)][u,(r,0)—u,(0,0)]). More precisely,

{(uP)?)—u3~u2. We can have some idea of what we shouldfor time separations longer than the sweep tifie

expect for dominant gravityugs<ug, from dimensional
analysis of EQ.(6.8). In this casey,—ugk, the inverse

S, (r,t)~S, (r,0)(T,-1/t)*[see Eq(4.37].
(v) In the absence of gravity, and fp?r,,< Ts<p %7,

sweep time due to the particle fall, and we would findthe spectrum of concentration correlation induced by turbu-

((UPY2P~Kk*U2/uZ, with k™ ~ugrs giving the transition

lence in a solid particle suspension, is universal and has

to the small scales for which the sweep time is shorter thaROWer-law behavior for separations above the Sizef an
75, and to which the particles are unable to respond. Fron$ddy that is crossed by a typical solid particle in a time equal

here we find((uP)?)—u?~ (ug/ug)?°u3 and we see that

to its lifetime. More precisely, 5‘2(6(r)6(0)>—1

gravity reduces the amount of nonergodicity of the solid par=p*(S /r)*? [see Eq(5.18)].

ticle flow.

VII. CONCLUSIONS

(vi) The solid particle flow is nonergodic, with a differ-
ence between the fluid velocity sampled along a solid trajec-
tory and the corresponding Eulerian averaggu®)?)
—(u?)=—(0.321Inp/p?)u [see Eqs(6.10 and (6.11)]. Di-

Consideration of a finite correlation time in the transportmensional reasoning fop=0(1) suggests that gravity
by a random velocity field has allowed analysis of a series 0khould reduce this effect fror(u”)2)—u3~u3 to ((u")?)

issues. We summarize the main results in the following.
(i) The self-diffusion of a fluid parcel obeys linear scaling
in the inertial rangegas it shouldl with a universal constant

Co=C¥2[ppl(p—p)]Inplp [see Eqs(3.7—(3.10], which

is sensitive both to the ratio of the eddy turnover and life-

—uf~ (ug/ug)*?us.

Analysis of some of these problems actually did not ex-
ploit the finite correlation time of the velocity field produced
through Eq.(2.7). In particular, the process of fluid parcel
relative dispersion was considered to the same ordgras
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in the Kraichnan model and, to this level, no information onceases to have a physical meaning for fipitaionetheless, it
the Lagrangian statistics was necessary. Finiteness of the cdixes, in perturbation theory, the scale at which both fluctua-
relation time had the only purpose to allow a meaningfultions and the difference,— 7, are generated. Notice that, in
definition of quantities such &8y, ande. the case of concentration fluctuations, this occurs in spite of
In the case of the self-diffusion properties of fluid andthe fact that the concentration correlations are peaked at the
solid particles, a finite correlation time and inclusion of theinertial scaleS; .
Lagrangian nature of time correlation was necessary from the Another peculiarity of the largp expansion is the multi-
start. Nonetheless, the only point in which analysis of theplicity of space scales associated with eddies having time or
random velocity field could not be avoided, was to determinq,ebcity scales related tes andug [see Eqs(4.6) and(4.9)].
the dimensionless consta@y, [14,29; the diffusion expo- Al of them collapse, forp=0(1), on thesize of a vortex
nents in the v_arious cases were already available by dimeRyity turnover time equal ta. In real high Reynolds num-
sional reasoning. ber turbulence, this is the saturation length expected for con-

Evalluatlon of the correlation tlmep_a_nd analy§|s of €ON"  centration fluctuation buildup, whery is an inertial range
centration fluctuations and nonergodicity of particle trajecto-

. . . o ) uantity.
ries[points(iv)—(vi)], instead, rested heavily on the fact thatq Y - .
the correlation time was finite and on knowledge of the ac- ' Nne parameters andp are central to the extension of the

analysis confirmed the role of eddies with lifetimg, al-  reference in real flows is the inverse cascade range of two-
ready pointed out in Ref22]. dimensional turbulence. An estimate of these parameters

Some comments are due on these last issues. As regaréguld be obtained using the leadipgexpressions provided
correlation times, they depend, in general, on nonuniversaddy Egs.(3.10, (3.23, (3.26, and(3.39, with the values of
aspects of the velocity statistics, and, in the present case, @Re constant<,, ¢, ¢, and B obtained from DNS. For in-
the assumption that also the large scale statistics is defingd, .o assuming=oc, comparison with the results pre-
along Lagrangian trajectories. In consequence of this, thgented,in Ref[32] wouid give p=2.

Eulerian time of the flow resulted shorter than the Lagrang- The results of the present paper have been obtained to

ian correlation time(Following Ref.[37], the Eulerian cor- leadi der ino. To this ord turbati ffects |
relation feels, at the same time, the decorrelation from rela:c2dINg Order inp. 10 this order, no perturbative efiects in

tive motion of the fluid, and the effect of eddy dedaor the stru_cture of random velqcity ﬁeld; are present, and the
re<r_, the standard picture of inertia and gravity leading, correlations for the Lagrangian velocity- obey Eq.(2.6).

respectively, to increase and decrease of the correlation timéN€ parameters entering these correlations must, nonethe-
however, was confirmed. less, be considered as renormalized quantities in a renormal-

As regards concentration fluctuations, previous treatmentged statistical field theory. No claim on the nature of these
of this problem, either were limited to the case of particlesfenormalizations is made, apart from that, to lowest order,
with Stokes time shorter than the Kolmogorov time of themarginality of interactions suggests that correction to scaling
flow [24], or neglected turbulent small scale structures altobe only logarithmic.
gether[23]. This was due to the difficulty in analyzing tra-  To this order inp, extension of the results to three dimen-
jectory crossing effects on inertial range scales, associateslons presents no conceptual difficulties. In particular, the
with the need for a proper treatment of the Lagrangian timemechanism of production for concentration fluctuations, and
statistics. The fully kinetic treatment adopted here, in whichfor correlation time and PDF corrections, is not expected to
the relative motion of individual solid particles is fully taken suffer modifications. Whether a random velocity field model
into account, in contrast to the fluid equation approach usetlke the present one could be appropriate to describe trans-
in Ref.[24], together with the large limit, is what allows port by a three dimensional turbulence, laden with coherent
treatment of the problem. structures and intermittency, is a different matter.

It should be mentioned that solid particle concentration The present extension to finite correlation times of the
fluctuations may be important in the process of rain formaKraichnan model is perturbative in nature. Imposition of
tion. It is known that the settling rate of a suspension istime statistics along Lagrangian trajectories had as conse-
enhanced in the presence of clumping of the heavy particleguence a non-Gaussian velocity field. This resulted in a field
[42], and turbulence induced concentration fluctuations aptheoretical perturbation theory, with expansion parameter
pear to be one of the important actors in the proddss. p~ 1, which is somewhat different from other field theories
Inclusion of the effect of gravity, on the same lines of thearising from closure analysis of the Navier-Stokes equation.
analysis carried on in Sec. IV would therefore be necessaryt would be interesting to understand the relation with such

As regards nonergodicity of the solid particle flow, it theories, in particular, with the quasi-Lagrangian approach
should be mentioned that this is a problem one has to dealescribed in Ref[44] and following papers based on this
with, before trying to extend standard Lagrangian transportvork (see Ref[45] and references thergin
models (in particular, the well mixedness hypothesis on  There are situations in which the higher orderspin
which they are basefd 4]) to the case of solid particles. become necessary. A relevant example could be the deriva-

An important aspect that must be stressed, in the calculaion of a turbulent closure: in this case, extension of the
tion of both7p and the concentration correlation spectrum, istheory to realistic values gf could not be avoided. Related
the role played by the localization leng®. This length  to this issue, is the calculation of the anomalous scaling ex-
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ponents for a passive scalar advected by a random velocityheoretical perturbation expansion, will be analyzed in a
field with finite correlation time. The analysis of pair diffu- separate publication.

sion carried on in Sec. lll proceeded, at the end, as if the

velocity field had zero correlation time. To lowest order in ACKNOWLEDGMENTS

p~ !, the same zero-mode structure of the Kraichnan model | wish to thank Paolo Muratore-Ginanneschi and Antti
is therefore expecteld]. To proceed in a consistent way, one Kupiainen for interesting and helpful conversation. Part of
should go to higher order, at the same time, in the passivehis research was carried out at the Mathematics Department
tracer part of the problem and in the field theory for theof the University of Helsinki. This work was supported in

velocity field. Such issues, concerning the nature of the fielgbart by the CNR short term mobility program.
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