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Particle transport in a random velocity field with Lagrangian statistics

Piero Olla
ISAC-CNR, Sezione di Lecce, 73100 Lecce, Italy

~Received 9 May 2002; revised manuscript received 13 August 2002; published 15 November 2002!

The transport properties of a random velocity field with Kolmogorov spectrum and time correlations defined
along Lagrangian trajectories are analyzed. The analysis is carried out in the limit of short correlation times, as
a perturbation theory in the ratio, scale by scale, of the eddy decay and turnover time. Various quantities such
as the Batchelor constant and the dimensionless constants entering the expression for particle relative and
self-diffusion are given in terms of this ratio and of the Kolmogorov constant. Particular attention is paid to
particles with finite inertia. The self-diffusion properties of a particle with Stokes time longer than the Kol-
mogorov time are determined, verifying on an analytical example the dimensional results of Olla@Phys. Fluids
14, 4266~2002!#. Expressions for the fluid velocity Lagrangian correlations and correlation times along a solid
particle trajectory are provided in several parameter regimes, including the infinite Stokes time limit corre-
sponding to Eulerian correlations. The concentration fluctuation spectrum and the nonergodic properties of a
suspension of heavy particles in a turbulent flow, in the same regime, are analyzed. The concentration spectrum
is predicted to obey, above the scale of eddies with lifetime equal to the Stokes time, a power law with
universal24/3 exponent, and to be otherwise independent of the nature of the turbulent flow. A preference of
the solid particle to lie in less energetic regions of the flow is observed.

DOI: 10.1103/PhysRevE.66.056304 PACS number~s!: 47.27.Qb, 47.55.Kf, 02.50.Ey, 05.10.Gg
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I. INTRODUCTION

One of the differences between high Reynolds num
turbulence and other examples of random fields with pow
law scaling, is the Lagrangian nature of time correlations@1#.
From the theoretical point of view, the need for a Lagrang
treatment of time correlations has been one of the main
ficulties in the realization of statistical turbulent closures@2#.
Because of this, many such theories assume from the
that the turbulence dynamics be equivalent to that of a r
dom velocity field with identical energy spectrum but Eu
rian time statistics, i.e., the fluctuations decay without be
transported by the larger vortices@3–5#. Such an assumption
does not work in the case of particle transport: both rela
and self-diffusion are affected by the way in which tim
correlations are defined.

Concerning self-diffusion, in Kolmogorov turbulenc
fluctuations at a scalel within the inertial range, have cha
acteristic velocity; l 1/3 and decay time; l 22/3 along fluid
trajectories. Hence, in a timet the velocity of a fluid parcel
will change by an amount of the order of that of a fluctuati
with that lifetime, i.e., byt1/2. If the fluctuations were no
advected by the flow, the fluid parcel would see the fluct
tion only for the time; l 21 it takes to cross it. The variation
of the fluid parcel velocity in a timet would be therefore
;t1/3.

Concerning relative diffusion, this process is determin
by vortices with the size of the fluid parcel separation at
given time. If these vortices were fixed in space, their eff
on relative diffusion would be proportional to the crossi
time by the fluid parcels, which is determined by the lar
scale properties of the flow. In other words, if time corre
tions were given in an Eulerian reference frame, the proc
of relative diffusion would not depend solely on the interp
ticle distance and on the velocity difference, but also on
total velocity.
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Given the difficulty in defining a velocity field with La-
grangian statistics, a successful strategy for the treatmen
transport has been to neglect time correlations altoget
i.e., to consider a velocity field u such that
^ua(x,t)ub(0,0)&5Uab(x)d(t): the so called Kraichnan
model @6#. In this model, Eulerian and Lagrangian time st
tistics trivially coincide in what is the zero order of som
perturbation theory in powers of the correlation time of t
turbulence. It has been possible, in particular, to determ
the anomalous scaling exponents of a passive scalar inje
at large scales in the velocity field@7–10#. The origin of this
success is that, although the time structure of the velo
correlation is lost, that of the relative displacement, who
geometrical properties determine the passive scalar cor
tions, is preserved@11–13#. ~For instance, particle pair sepa
ration still obeys Richardson diffusion.!

The question, at this point, is how to introduce finite co
relation times in a perturbative manner, but preserving
Lagrangian nature of correlations. There are practical reas
to do this. One motivation, of course, is to be able to de
mine the time correlations of the particle velocities. Lagran
ian dispersion models@14–16# are based on the adoption o
prescriptions on the form of these time correlations; to
able to determine them directly from the statistical propert
of the velocity field would be, therefore, of some interest

It must be said that most of the prescriptions enterin
Lagrangian dispersion model could be obtained, in pract
by dimensional reasoning or by experiments. In some ca
like in the presence of particles endowed with inertia, t
turns out, however, to be a difficult task@17,18#. It is very
difficult, for instance, to make assumptions on the prefere
of solid particles to lie in certain regions of the flow inste
of others@19–21#. Solid particle transport by a turbulent flow
is an example of a situation in which careful treatment of
time dependent statistics of the velocity field is essential. I
precisely the interplay between the response time of the s
©2002 The American Physical Society04-1
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particle to the fluid, i.e., the Stokes timetS , and the charac-
teristic times of the turbulent flow@22#, which determines the
dynamics, and this is clearly lost when all the turbulent tim
are sent to zero.

Recently, there has been strong theoretical interest on
problem of turbulence induced concentration fluctuations
a heavy particle suspension. In Ref.@23#, the role of a finite
correlation time of the turbulent field was recognized. In R
@24#, the case of a particle with Stokes time in the turbule
viscous range was analyzed exploiting the fact that, in
case, the fluid velocity is spatially smooth on the scale
interest for the solid particle. In both Refs.@23# and @24#,
however, the inertial range structure of the turbulent fl
was disregarded altogether. The approach carried on h
allows one instead to analyze the production of concentra
fluctuations in any regimes of Stokes times, in particular
the inertial range, where qualitatively different behaviors
the concentration fluctuation buildup are observed.

The purpose of this paper is to extend the Kraichn
model to short but finite correlation times, preserving, in
controlled perturbation theory, the Lagrangian structure
correlations, and providing several applications to the tra
port of particles with and without inertia. The analysis w
be confined to a situation of two-dimensional, stationary,
mogeneous, and isotropic turbulence.

This paper is organized as follows. In Sec. II, the eq
tions determining the extension of the Kraichnan model w
be illustrated and their main properties discussed. Sectio
will be devoted to the dynamics of passive tracers; the s
diffusion and relative diffusion of fluid parcels, including th
expression for the constants involved, will be determin
the effect of finite diffusivity will be discussed and th
Batchelor constant for a passive scalar injected at large s
in the flow will be calculated. In Sec. IV, the transport pro
erties of a heavy particle with Stokes time longer than
Kolmogorov time will be studied, focusing on the relatio
between the correlation time for the fluid velocity sampl
by the particle, and its Lagrangian and Eulerian counterpa
Section V will be devoted to calculation of the concentrati
fluctuations arising from compressibility of the heavy pa
ticle flow. In Sec. VI, the bias introduced by inertia in th
sampling of fluid velocity by solid particles~nonergodic ef-
fects! will be analyzed. Section VII will be devoted to con
clusions.

II. FINITE CORRELATION TIME EXTENSION
OF THE KRAICHNAN MODEL

A two-dimensional random velocity field with Euleria
correlation times scaling like the eddy turnover time of a r
turbulent flow can be obtained very simply, writing approp
ate Langevin equations for the Fourier components of
vorticity field,

] tqk~ t !1gkqk~ t !5hkjk~ t !, ~2.1!

whereqk(t) is the~space! Fourier transform of the vorticity,

q~x,t !5“'•u~x,t !, ~2.2!
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@for the generic vectorv, we indicatev'5(2v2 ,v1)], and
jk(t) is the Fourier transform of a zero mean fully uncorr
lated noise term of unitary amplitude,

^j~x,t !j~0,0!&5d~x!d~ t !. ~2.3!

The damping and forcing kernelsgk andhk are chosen, for
k!h21, with h the Kolmogorov length of the flow, as

gk5rCKol
1/2 ē1/3~k21k0

2!1/3, ~2.4!

Hk5uhku25
8prCKol

3/2 ēk2

k21k0
2

, ~2.5!

while, for kh.1, some cutoff is imposed on the forcin
amplitudeHk . In this way, the velocity spectrumUk(t), de-
fined by ^uk(t)up(0)&5Uk(t)(2p)2 d(k1p), will read, for
kh!1,

Uk~ t !54pCKolē
2/3

k'k'

k2

exp~2gkutu!

~k21k0
2!4/3

, ~2.6!

whereCKol andē play the role, respectively, of the Kolmog
orov constant and the inertial range energy flux in a r
turbulent field having this correlation spectrum. Fork0!k
!h21, we thus have the energy spectrum:Ek

5CKolē
2/3k25/3. Identifying gk

21 with the decay time and
k22Uk

21/2(0) with the turnover time of an eddy at scalek21,
we see thatr gives the ratio of the eddy turnover and ed
decay time in the inertial range. The effect of sweep by
large scales, however, is not accounted for in this way.

The most natural way to impose Lagrangian correlatio
in the random velocity field is to include an advection te
in Eq. ~2.1!, which will take the following form in real space

@] t1u~x,t !•“#q~x,t !1E d2yg~x2y!q~y,t !

5E d2yh~x2y!j~y,t !. ~2.7!

This has the form of a vorticity equation in which the forcin
and dissipation terms, instead of being localized, resp
tively, at large and small scales, act over the whole of
inertial range, and this is reflected in their being nonlo
operators in real space. This is opposite to what happens
real turbulent field, where energy balance is established
tween large scale forcing and small scale viscous dissipat
by means of the nonlinear cascade. A nonlinear cascad
still present because of the convection term, but it acts on
time scale of the eddy turnover time, and, for larger, its
effect is only a correction to that of the forcing and dampi
terms. Choosingr large has, therefore, the consequence t
convection acts merely as a large scale sweep.

Actually, Eq. ~2.7! looks a lot like the typical starting
point of many turbulent closures@3–5#, in whichgk gives the
turbulent response function~eddy viscosity of small scales!
and hk the nonlinear forcing by the cascade. For instan
4-2
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r22 coincides with the renormalized dimensionless coupl
constant of the renormalization group~RNG! closure@5,25#,
and its smallness is there the basis for the establishment
perturbation theory. Here, the philosophy is rather differe
no parametrization of the turbulence cascade is sought,r is
chosen arbitrarily large, and the similarity with real turb
lence is expected to be only kinematic.~Also, the separation
of a Kolmogorov constant out of the energy fluxē is arbi-
trary.!

Things can be made a little bit more quantitative, intr
ducing scale by scale the sweep time,

Tk5k21^u2&21/2;CKol
21/2ē22/3k0

1/3k21, ~2.8!

i.e., the time needed to a vortex of sizek21 to pass in front of
a fixed probe. We see that sweep is important for all sca
for which gkTk,1, i.e., from Eqs.~2.4! and ~2.6!, for k
.k0r3. The Kraichnan model is recovered when sweep
be neglected in all of the inertial range, i.e., forr
.(hk0)21/3. This means basically that the zero correlati
time limit is taken before the infinite Reynolds number lim
hk0→0. In this regime we have

Uk~ t !.
k'k'

k2

2p

r
CKol

1/2 ē1/3k210/3d~ t !. ~2.9!

To understand what happens in the regime of domin
sweep, it is convenient to shift to Lagrangian coordinat
Introduce then the coordinatez(tux,t0) of a fluid parcel
which at timet0 is at x, and define the Lagrangian velocit

uL~x,t !5u„z~ tux,0!,t… ~2.10!

and analogous expressions forqL(x,t) and the other fields
After introducing the increase of trajectory separation in
time t: dz(tux,y)5z(tux,0)2z(tuy,0)2(x2y), Eq. ~2.7! be-
comes, in the new variables,

] tq
L~x,t !1E d2yg@x2y1dz~ tux,y!#qL~y,t !

5E d2yh@x2y1dz~ tux,y!#j~y,t !, ~2.11!

which must be coupled with the equation fordz; inverting
Eq. ~2.2!,

] tdz~ tux,y!5
1

2pE d2r @G~x,r !2G~y,r !#qL~r ,t !

~2.12!

with

G~x,r !5
@x2r1dz~ tux,r !#'

ux2r1dz~ tux,r !u2
. ~2.13!

We see then that the natural expansion parameter of
theory is
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dz~ tux,y!

ux2yu
;

uu~x,0!2u~y,0!u

ux2yug ux2yu21

;r21, ~2.14!

i.e., the relative amount of particle separation increase in
eddy lifetime. The zero order of the theory, which is Gau
ian and is described by Eq.~2.6! after substitutingu→uL,
corresponds to neglecting trajectory separation in an e
lifetime, while keeping the uniform large scale sweep, i
plicit in the Lagrangian fieldqL.

Although the results that follow in the present paper a
all obtained to the lowest order in ther expansion@26#,
associated with neglecting all non-Gaussian effects inu, a
diagrammatic expansion of Eqs.~2.12! and~2.13! in terms of
the fieldsqL, dz and their conjugate could be obtained b
means of the Martin-Siggia-Rose formalism@27#. This ex-
pansion would only be valid locally aroundt50, since, at
long times, trajectory separation becomes dominant.~To be
consistent, this perturbation expansion should not rece
contribution by correlations involving pairs of points i
space-time such thatg ux2x8u21ut2t8u.r, but this is expected
to be true from the exponential decay of the time corre
tions.!

The interaction terms in the perturbation expansion
obtained Taylor expanding the kernelsg, G, andh (H work-
ing with the field action!. The result forg is, for instance,

g~x2y1dz~ tux,y!!5g~x2y!1 (
n51

`

lgn
gn

i 1••• i n~x2y!

3dzi 1
~ tux,y!•••dzi n

~ tux,y!,

~2.15!

with lgn
51 a coefficient that may scale when carrying

power counting. Similar coefficientslGn
andlHn

are intro-
duced in the Taylor expansion forG and H. The theory is
thus characterized by an infinite number of interactions
volving vertices, which, toO(r2n), have up to 21n legs.

To check for divergences at largek in the perturbation
expansion, we use power counting directly in Eqs.~2.11!–
~2.13! @28#. Rescaling coordinates and times as

x→Lx and t→L2/3t, ~2.16!

Eqs. ~2.11!–~2.13! remain invariant in form, provided tha
we rescale the various fields and interactionsA5qL,dz,
lgn

,lGn
,lHn

: asA→L [A]A, with

@qL#52
2

3
, @dz#51,

@lgn
#5@lHn

#5@lGn
#50. ~2.17!

This leads to expect logarithmic divergences at largek,
meaning renormalizability of the field theory and the pos
bility of logarithmic correction to scaling, produced b
renormalization of the parameters in Eqs.~2.11!–~2.13!.
4-3
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It must be mentioned that marginal interactions and ren
malizability are consequences of the dimensional rela
implicit in Kolmogorov scaling:@qL#52@ t#. In general, had
we set

gk;kr , Hk;ks, ~2.18!

we would have obtained

@qL#5
r 2s22

2
, @dz#5

3r 2s

2
,

@lgn
#5@lHn

#5@lGn
#52n~@ t#1@qL# !5

n

2
~s1223r !.

~2.19!

We thus see that super-renormalizability@l#,0 and non-
renormalizability @l#.0 of the theory occur, respectively
for positive and negative@qL#1@ t# @28#. This corresponds to
the two regimes of eddy decay time becoming asympt
cally longer~shorter! than the eddy turnover time, and hen
the nonlinearity becoming dominant~negligible! at large
scales.

Marginality of the interactions means that logarithmic d
vergences may arise both at large and smallk. At small k,
however, such divergences are not expected, due to the
traction in the definition ofdz. The reason is sketched belo
~more details will be given in a separate publication; it m
be said, anyway, that this is not a surprise: Lagrangian
sures@2# were introduced precisely to cure the infrared
vergences arising in the original Eulerian theories!. As it ap-
pears from Eq.~2.17!, small k divergence is due to interna
lines in a loop diagram involving the fielddz. The scaling of
Eq. ~2.17! is associated with large, not with smallk behav-
iors. In fact, the divergences occurring for largek in a loop
diagram will not change if we exchangedz(tux,y)
→z(tux,0)1z(tuy,0)2(x1y); this is because each sma
eddy contributes to the separationx2y an amount that is of
the same order of the one to sweep. Now, the logarith
divergence predicted at smallk in a loop diagram comes
indeed, from equating the scaling of the sweepz(tux,0)
1z(tuy,0)2(x1y) with that of the trajectory separatio
dz(tux,y), also at smallk, which is incorrect. For smallk,
this scaling should be corrected by a factork per field dz
involved in the lines of the loop, and this is enough to elim
nate divergence.

III. PASSIVE TRACER TRANSPORT

A. Self-diffusion of a fluid parcel

Lagrangian correlation functions in the form
^uL(x,t)uL(x,0)&5^u(z(tux,0),t)u(x,0)& are the simplest
objects one may try to calculate from the random veloc
field introduced in Sec. II. The starting point, to lowest ord
in r21, and after sending the Kolmogorov scaleh to zero, is
the following modification of Eq.~2.6!:

Uk
L~ t !54pCKolē

2/3
k'k'

k2

exp~2gkutu!

~k21k0
2!4/3

. ~3.1!
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The Lagrangian correlation timetL is then readily calcu-
lated,

tL
215^uuLu2&F E dt^uL~x,t !•uL~x,0!&G21

52rCKol
1/2 ē1/3k0

2/3

~3.2!

and we have the following relation between the turbulen
level uT

25^u2&5^uuLu2& and the integral scales of the flowk0

andtL :

uT
253CKolē

2/3k0
22/356rCKol

3/2 ētL . ~3.3!

The correlation timetL is determined by the particular form
of Uk

L we have chosen at smallk, which is nonuniversal. It is
more interesting, and relevant from the point of view of L
grangian dispersion modeling@14,29#, to calculate the La-
grangian time structure function,

^@ua
L~x,t !2ua

L~x,0!#@ub
L~x,t !2ub

L~x,0!#&

5
1

2
^uuL~x,t !2uL~x,0!u2&dab . ~3.4!

We discover immediately that, in order to have a self-simi
spectrum for the inertial range, the time correlations sho
have continuous time derivative att50, a property not sat-
isfied by Eq.~3.1!.

This self-similarity violation can be illustrated in a simp
way, imagining the turbulence field in the neighborhood
the fluid parcel as a superposition of nested eddies with s
l n , velocity un , and eddy turnover timetn ,

l n5 l 022n, un5u022n/3, tn5t0222n/3. ~3.5!

If the time correlation decayed linearly fort→0, we would
have

^uuL~x,t !2uL~x,0!u2&; (
tn,t

un
2 t

tn
1 (

tn.t
un

2;u0
2ln~t0 /t !

t

t0
.

~3.6!

Thus, identical scaling ofun
2 and tn , and linear decay of

correlations cause the largest space scale to contribute to
structure function at arbitrary short time separationt, in the
same way as a vortex with eddy turnover timetn;t, whence
the logarithmic correction involvingt0.

In order to have a quadratic behavior of the time corre
tion at t50, it is necessary that the noisej in Eq. ~2.7! be
correlated in time, and the correlation must again be giv
along the trajectories. The appropriate modification to E
~2.7! is, therefore,

@] t1u~x,t !•“#q~x,t !1E d2yg~x2y!q~y,t !5r ~x,t !,

@] t1u~x,t !•“#r ~x,t !1E d2yĝ~x2y!r ~y,t !

5E d2yh~x2y!j~y,t !, ~3.7!
4-4
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where, fork!h21,

ĝk5 r̂CKol
1/2 ē1/3k2/3,

Hk5uhku258prr̂~r1 r̂ !CKol
5/2 ē5/3~k21k0

2!2/3. ~3.8!

It is easy to show that also the field theory associated w
Eq. ~3.7! is characterized by marginal interactions:@lgn

#

5@lĝn
#5@lHn

#5@lGn
#50 and the considerations in Sec.

extend to the present case.
The zero order of the theory leads to the following cor

lation function:

Uk
L~ t !5

k'k'

k2

4pCKolē
2/3

~k21k0
2!4/3

re2ĝkutu2 r̂e2gkutu

r2 r̂
~3.9!

and the time correlation has a quadratic maximum att50.
Calculation of the Lagrangian correlation time leads to
same result as of Eq.~3.2!, with the substitutionr→rr̂/(r
1 r̂), while smoothness of the time correlation eliminat
the logarithmic correction to the scaling of the Lagrang
time structure function. This structure function obeys, in fa
after sendingk0→0, the expected normal diffusion behavio

^uuL~x,t !2uL~x,0!u2&52C0ēutu,

with

C05CKol
3/2 r̂r

r̂2r
ln r̂/r, ~3.10!

the constantC0 is O(r) and, as expected from the discussi
leading to Eq.~3.6!, diverges logarithmically forr̂/r→`.

B. Relative diffusion

Analyzing the transport of a cluster of particles requir
consideration of time intervals, during which the space se
rations involved cannot be approximated as constant. O
these time scales, the short correlation time limit leads t
perturbation scheme, which treats the velocity field to z
order as a white noise.

We focus on the case of a pair of particles. We have
study an equation in the form

] t@za~ tur0,0!2za~ tu0,0!#5ua
L~r0 ,t !2ua

L~0,t !

5Uab~z~ tur0,0!2z~ tu0,0!!jb~ t !,

~3.11!

with ^ja(t)jb(0)&5dabd(t) andUab to be determined. Due
to the multiplicative noise nature of this equation, attent
must be paid to the possible presence of drift terms aris
from the Stratonovich prescription implicit in its definitio
@30#. It is easy to show that this drift is identically zer
either by direct calculation of the incrementdz(tux,0) for t in
the inertial range, or noticing that
05630
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^dz~ tur0,0!&5E
0

t

dt@^uL~r0 ,t!&2^uL~0,t!&#50,

~3.12!

because of homogeneity of turbulence. For this reason,
separation process is described simply by

] t^@za~ tur0,0!2za~ tu0,0!#@zb~ tur0,0!2zb~ tu0,0!#&

5Dab„z~ tur0,0!2z~ tu0,0!… ~3.13!

with

Dab~r !5E dt^@ua
L~r ,t !2ua

L~0,t !#@ub
L~r ,0!2ub

L~0,0!#&.

~3.14!

This tensor is easily calculated fromD11(r ) for r5(r ,0),
exploiting incompressibility. Using*0

2pdu sin2u sin2(xcosu)
5(p/2)@12J0(2x)2J2(2x)#, we find, in the limitk0→0,

D11~r !5
4a7/3CKol

1/2 ē1/3

r
r 4/3, ~3.15!

where

a7/35E
0

`

dxx27/3@12J0~x!2J2~x!#.0.265, ~3.16!

with Jn the Bessel function of the first kind, is evaluated
terms of gamma functions@31# using the formula

*0
`dxxmJn(x)52m$G@ 1

2 (11n1m)#/G@ 1
2 (11n2m)#%.

From incompressibility we find, therefore,

Dab~r !5F r ar b

r 2
1

7

3 S dab2
r ar b

r 2 D G4a7/3CKol
1/2 ē1/3

r
r 4/3.

~3.17!

We want to study the asymptotics of the separation proc
of two particles in the inertial range. The procedure is st
dard~see, e.g., Ref.@16#!; we introduce the distributionP for
the separationr at timet, which will obey the diffusion equa-
tion ~the summation over repeated indices convention
adopted throughout the paper!

] tP5 1
2 ]a]bDabP ~3.18!

and look for an isotropic similarity solution in the form

P~r ,t !5t23f ~ t23/2r !5t23f ~R!. ~3.19!

Equation~3.18! takes then the form

3

2
]a~Ra f !1

4a7/3CKol
1/2 ē1/3

2r
]aR1/3Ra]Rf 50. ~3.20!

This equation has an unphysical solution, which is diverg
in R50, and a finite one,
4-5
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f ~R!5expS 2
9rR2/3

8a7/3CKol
1/2 ē1/3D , ~3.21!

whose moments are

^Rn&5E
0

`

R11ndR f~R!

5
3

2
S 8a7/3CKol

1/2 ē1/3

9r
D 31(3n/2)

GS 31
3n

2 D , ~3.22!

with G the standard gamma function.
From here, the expression for the particle space separa

is obtained in a straightforward manner; forgx21t@1, indi-
cating r (t)5z(tur0,0)2z(tu0,0),

^r 2~ t !&5cēt3, c5
10 240a7/3

3 CKol
3/2

243r3
, ~3.23!

i.e., the space separation obeys Richardson diffusion. Fo
relative velocity, we have, from Eq.~2.6!,

^@ur
L~r0,0!2ur

L~0,0!#2&52a5/3Ckolē
2/3^r 2/3~ t !&, ~3.24!

where

a5/35E
0

`

dxx25/3@12J0~x!2J2~x!#.2.149 ~3.25!

and, using Eq.~3.22!, for gx21t@1, we find the normal dif-
fusion behavior,

^@ur
L~r0,0!2ur

L~0,0!#2&5 c̃ēt, c̃5
16a5/3a7/3CKol

3/2

3r
.

~3.26!

Passing to the smoothed out in time version of the velo
field provided by Eq.~3.7!, is accomplished, as in the case
tL , by exchangingr→rr̂/(r1 r̂). In Ref. @32#, both a sub-
exponential behavior for the functionf (R) and Richardson
diffusion were observed in a DNS~direct numerical simula-
tion! of two-dimensional turbulence in the inverse casca
regime. Based on the results of that paper, extrapolating
plicability of our leading order expressions inr would give
then ~taking alsor̂→`) r.2.

C. The role of diffusivity and the Batchelor constant

The dynamics of passive tracers, contrary to that of fl
elements, feels the effect of molecular diffusivity. Due
finiteness of the turbulent correlation times, this effect do
not consist purely of an additive noise contribution to t
tracer velocity. Indicating bys the molecular diffusivity, the
passive tracer velocity will have the form

v~x,t !1~2s!1/2j~x,t ! ~3.27!
05630
on

he

y

e
p-

d

s

with ^ja(x,t)jb(0,0)&5dabd(x)d(t) and v obeying an
equation in the form

@] t1v~x,t !•“#qv~x,t !1E d2yg~x2y!qv~y,t !

2E d2yh~x2y!j~y,t !

52~2s!1/2^j~x,t !•“qv~x,t !&j.s¹2qv~x,t !,

~3.28!

whereqv5“'•v, ^•&j is an average limited to the noisej
and use has been made, in converting the advection by
lecular noise into a diffusion term, of Itoˆ’s lemma@30#. We
see~it is assumed that the limith→0 is already taken! that
there is a renormalization of the damping kernelg,

gk→gk1sk2, ~3.29!

which leads to a cutoff for the velocity at the inverse diff
sive scale,

hs
215~rCKol

1/2 !3/4ē1/4s23/4. ~3.30!

We have then,

^vk~ t !v2k~0!&5
exp~2sk2utu!

11~khs!4/3
^uk~ t !u2k~0!&,

~3.31!

and for small space separationsr /hs→0, we have a qua-
dratic behavior for the velocity structure function,

^@v r~x1r ,t !2v r~x,t !#2&

52CKolē
2/3r 2hs

24/3E
0

` @12J0~x!2J2~x!#dx

x5/3
„x4/31~r /hs!4/3

…

.
1

4
CKolē

2/3hs
24/3r 2u ln r /hsu. ~3.32!

The transport of a passive scalaru(x,t) will be described by
the equation

@] t1v~x,t !•“#u~x,t !5s¹2u~x,t !1 f ~x,t !, ~3.33!

with f (x,t) a source term. An interesting quantity to calc
late is the fluctuation spectrum foru in the casef is random
in time and concentrated at large scale,

^ f ~x1r ,t ! f ~x,0!&5F~r !d~ t !, F~r !5H 2ēu , k0r ,1

0, k0r .0.
~3.34!

We can thus consider̂u&50. The equation for the stead
state passive scalar correlationQ(r )5^u(x1r ,t)u(x,t)&
will then be, fork0r !1,
4-6
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^u~x,t !@v~x1r ,t !2v~x,t !#•¹u~x1r ,t !&

52s¹2Q~r !14ēu . ~3.35!

For r→0, the left hand side of this equation is zero; we th
obtain ēu5(s/2)^u“uu2&, i.e., ēu is the dissipation of pas
sive scalar fluctuations. Following the same approach a
the preceding section, the velocity differencev(x1r ,t)
2v(x,t) is approximated by a white noise. From Itoˆ’s
lemma, its contribution in Eq.~3.35! will be an eddy diffu-
sivity Dab

v (r ), whose expression will coincide, forr @hsr ,
with the one forDab provided by Eqs.~3.16! and ~3.17!.
Drift terms coming from the Stratonovich prescriptions a
ruled out with the arguments used in the preceding sect
The resulting diffusion equation will then read,

]a]b~ 1
2 Dab

v ~r !12sdab!Q~r !14ēu50. ~3.36!

For r @hs Di j
v is essentially a correction to the molecul

diffusivity, and will read, from Eq.~3.31!,

Da
v ~r !5E dt^@va~r ,t !2va~0,t !#@vb~r ,0!2vb~0,0!#&

.F r ar b

r 2
1

13

3 S dab2
r ar b

r 2 D G3ps

8r2
~r /hs!10/3.

~3.37!

For hs!r , Di j
v is approximated by Eq.~3.17!, the molecular

diffusivity s can be neglected and Eq.~3.35! takes the form

Q91
7

3r
Q852

8rēu

4a7/3CKol
1/2 ē1/3r 4/3

. ~3.38!

The solution of this equation gives automatically the pass
scalar structure function̂@u(x1r ,t)2u(x,t)#2&52@Q(0)
2Q(r )# in the inertial range foru: hs!r !k0

21. This struc-
ture function scales liker 2/3 and can be written in the form

^@u~x1r ,t !2u~x,t !#2&5
Bēur 2/3

CKol
1/2 ē1/3

, ~3.39!

with the parameterB53r/a7/3 the so called Batchelor con
stant of the flow. As with relative diffusion, the case of
velocity field with smooth time correlation described by E
~3.7! is recovered substitutingr with rr̂/(r1 r̂).

IV. SOLID TRACERS: ONE-PARTICLE STATISTICS

We consider the simplest case of a linear drag. In
presence of gravity~or of a constant external force! and of
the turbulent velocity fieldu(x,t), the solid particle coordi-
natezP(tux,0) will obey the equation of motion,

żP~ tux,t !5vP~x,t !1uG , zP~0ux,0!5x, ~4.1!
05630
s

in

n.

e

.

e

whereuG is the gravitational drift that we suppose consta
and uniform andvP is the fluctuation in the Lagrangian soli
particle velocity, which obeys the linear relaxation equati

v̇P~x,t !5tS
21@u~zP~ tux,0!,t !2vP~x,t !#

5tS
21@uP~x,t !2vP~x,t !#, ~4.2!

with tS the Stokes time.~For a spherical particle of radiusa
and densityrP , in a fluid of densityr0 and kinematic vis-
cosity n, we would have:„2a2/9n…u12rP /r0u; we are dis-
regarding any effect from finite particle Reynolds numb
@33#.! From now on we shall identify Lagrangian quantitie
calculated on solid particle trajectories by the superscripP.

In general the noncoincidence of fluid and solid partic
trajectories makes the analysis of Eqs.~4.1! and~4.2! a very
difficult task. The short correlation time limitr→`, how-
ever, allows us to proceed perturbatively in the fluctuat
part of the trajectory separationuGt1z(tux,0)2zP(tux,0).
The physical motivation for this is that, from Eq.~4.2!, uGt
1z(tux,0)2zP(tux,0) fluctuates on time scaletS with veloc-
ity scale fixed by those eddies that have decay timetS .
Hence, forr large, the fluctuating part of trajectory separ
tion remains small on the scale of these eddies. Furtherm
when eitheruGt.dz(tux1uGt,x), or g uuGtu21t.1, in other

words, when eitherCKol
3/2 ēt/uG

2 ,1 or CKol
3/2 ēt/uG

2 .r23 ~pro-
videdr.1, one of the two conditions is always satisfied!, it
is possible to approximatez(tux,0)1uGt.z(tux1uGt,0).

To lowest order we have, therefore,

u„zP~ tux,0!,t…5u„uGt1z~ tux,0!,t…5uL~x1uGt,t !.
~4.3!

We obtain immediately the fluctuation amplitude of the v
locity difference between solid and fluid particles at a giv
position. From Eqs.~4.2! and ~4.3! we can write,

vP~x,t !5E d2k

~2p!2E2`

t dt

tS
uk

L~t!expS 2
t2t

tS
1 ik•xD

~4.4!

and from here we obtain, using Eq.~3.2!,

^~va2ua!~vb2ub!&

5dabuS
2E

1

` dx

xS 11
2tS

tL
x1/3D ——→

tS!tL

3dabuS
2ln~tL /tS!,

~4.5!

where

uS5S tS

3tL
D 1/2

uT ~4.6!

for tS,tL , is the velocity scale of eddies with lifetimetS
anduT is the turbulent velocity defined in Eq.~3.3!. In order
to proceed to next order, it is necessary to calculate the
jectory separation,
4-7
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zP~ tux,0!2z~ tux,0!5uGt1~12e2t/tS!E
2`

0

dt et/tSuL~x,t!

2E
0

t

dt expS 2
t2t

tS
DuL~x,t!. ~4.7!

We notice from this equation that the inertia produced par
trajectory separation does not grow indefinitely. In oth
words, if uG50 and to lowest order inr21, there will be
localization of solid particle trajectories around the fluid p
cel trajectories they cross at any given time; from Eq.~4.7!:

^uzP(tux,2`)2z(tux,2`)u2&;(uTtS)2;CKolē
2/3k0

22/3tS
2 .

We thus introduce the localization lengthSl ,

Sl5CKol
1/2 ē1/3k0

21/3tS . ~4.8!

What happens is that the velocity differencevP2uP obeys a
relaxation equation with a forcing that is a time derivativ
from Eq. ~4.2!: (d/dt)(vP2uP)1tS

21(vP2uP)52u̇P. The
frequency spectrum ofvP2uP does not have, therefore, th
small frequency singularity necessary for long time div
gence. The localization lengthSl will appear to play a fun-
damental role in the production both of concentration flu
tuations and of corrections to the velocity correlation tim
~Of course, to higher order inr21, the relative separation o
fluid parcels sets in and localization is destroyed;Sl becomes
then, that part of trajectory separation which remains a
the Richardson diffusion contribution is subtracted out.!

In the absence of gravity, beside the integral scale dep
dent localization lengthSl , three more scales, which, iftS
!tL , are purely inertial, can be obtained combiningtS , the
crossing time of an eddy by a solid particle, the eddy li
time, and the eddy turnover time. We have the sizeS of an
eddy whose lifetime equalstS , gS21tS;1; the sizeSc of an
eddy that is crossed by a solid particle in a timetS , uS
;Sc /tS ; the sizeSi of an eddy whose lifetime equals th
crossing time by a solid particle,SigS

i
21;uS . Summarizing,

S5r3/2CKol
3/4 ē1/2tS

3/2, Sc5r1/2CKol
3/4 ē1/2tS

3/2,

Si5r23/2CKol
3/4 ē1/2tS

3/2. ~4.9!

From Eq. ~4.9!, we identify the following sequence o
ranges.

A large separation ranger .S, in which the fluid velocity
uP varies slowly on the scale of the relaxation timetS .

A first intermediate rangeS,r ,Sc in which the fluid
velocity uP is a fast variable, but still,tS is short compared
with the crossing time of an eddy of sizer; hence, Eq.~4.2!
has the form of a Langevin equation with a noisetS

21uP of
constant amplitude on the scale of this crossing time. T
crossover scaleS will play an important role in the determi
nation of the degree of nonergodicity of the solid partic
flow ~see Sec. VI!.

A second intermediate rangeSc,r ,Si , in which the
crossing time is shorter than both the Stokes time and
05630
f
r
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e

eddy turnover time, but is longer than the lifetime of an ed
of that size; hence, the solid particle moves ballistically w
respect to the fluid.

A small separation ranger ,Si , in which trajectory sepa-
ration in the lifetime of an eddy is not a perturbation an
more.

From Eqs.~4.3!, ~4.4!, and~4.7!, we can establish a per
turbative calculation scheme foruP and vP. Notice that,
within perturbation theory,vP is a one-valued function ofx
andt, andv(x,t) defines automatically a velocity field for th
solid particles. The separation betweenSi and all the other
scales of the problem, has the consequence that, in
present case, the Weinstock approximation is exact@34#.
What happens is that trajectory separation is produ
mainly by eddies of sizer *S, for which trajectory separa
tion is a perturbation. This has the consequence, in particu
that the Weinstock approximation applies also at scaler
,Si for which trajectory separation is not a perturbation
all. For dominant gravity, i.e., whenuG.uS , trajectory sepa-
ration is produced mainly by the gravitational driftuG and
the Weinstock approximation is automatically satisfied.

We can calculate at this point the time correlation for t
solid particle velocity and adopt the approach followed
Refs.@35,36#; we can thus write, using Eq.~4.7!,

^u1
P~0,0!u1

P~0,t !&

5E d2k

~2p!2

d2p

~2p!2
^u1k

L ~0!u1p
L ~ t !

3exp@ ip•„zP~ tu0,0)2z~ tu0,0!…#&

52E d2k

~2p!2

d2p

~2p!2
exp~ ip•uGt !

d2Z@J#

dJk1~0!dJp1~ t !U
J5pJ̄t

,

~4.10!

where

Z@J#5K expS i E d2s

~2p!2E dtus
L~ t !•Js~ t !D L

5N expS 2
1

2E dtdt8E d2s

~2p!2

3Js~t!•Us
L~t2t8!•J2s~t8!D ~4.11!

is the generating functional for the fielduL and

J̄t~t!5H 0, t.t

2expS 2
t2t

tS
D , 0,t,t

@12exp~2t/tS!#exp~t/tS!, t,0.

~4.12!

Substituting back into Eq.~4.10!, we obtain, after introduc-
ing dimensionless variablest̄ 5t/tS , ūG5k0tSuG , and ḡ
5tSgk0

5tS /(2tL),
4-8
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^u1
P~0,0!u1

P~0,t !&5
uT

2

6 E
1

`

dxx24/3@J0„ūG~x21!1/2t̄ …1J2„ūG~x21!1/2t̄ …#

3expF2ḡ t̄ x1/32
ḡ2~x21!

2r2 E
1

` dy

y4/3~11ḡy1/3!
S 12e2 t̄2

e2ḡ t̄ y1/3
2e2 t̄

12ḡy1/3 D G . ~4.13!
ve
u

ch
la
g
th

co
y

is
par-

q.
We see from this equation that decorrelation of the fluid
locity sampled by a solid particle receives three contrib
tions: one from the gravitational driftuG , one from the eddy
decayḡx1/3t̄ , and the integral term in the exponential, whi
comes from inertia produced trajectory separation. This
term is peculiar, in that it saturates to a constant for lont
instead of continuing to increase indefinitely. This term is
argument in the exponential expression forZ@J# @see Eq.
~4.11!#, which is essentially

pp:^@zP~ tu0,0!2z~ tu0,0!#@zP~ tu0,0!2z~ tu0,0!#&, ~4.14!

with the drift uG subtracted out, and withp the wave vector
entering the integral of Eq.~4.10!. But, from Eqs.~4.7! and
~4.8!, we saw that this expression saturates att→`. In con-
sequence of this, for long enough times, the largex behavior
of the integrand in Eq.~4.13! will be dominated by the value
at saturation of the inertia produced term.

A. Velocity self-diffusion

Inertia causes two ranges of time separations in the
relation ^u1

P(x,0)u1
P(x,t)&: one at short times dominated b
e

er

la

05630
-
-

st

e

r-

sweep from the velocity differenceuG1v2u and one at long
time associated with eddy decay, where Eq.~3.10! holds
@22#. The transition between the two ranges occurs at

t;
max~uG

2 ,uS
2!

r3CKol
3/2 ē

. ~4.15!

From Eqs. ~4.5! and ~4.6!, for dominant inertia, i.e.,uS

.uG , this crossover time is much shorter thantL , while, for
dominant gravity, i.e., foruG@uS it is possible that sweep
dominates for all inertial time scales; for this to occur, it
necessary that the crossing time of a large eddy by the
ticle be less thantL , i.e., k0uGtL.1. For dominant inertia

the crossover timeuS
2/(r3CKol

3/2 ē);r22tS is just the lifetime
of an eddy of sizeSi @see Eq.~4.9!#.

For dominant gravity, the exponential term in E
~4.13! can be neglected. Fort!min(tG ,tL) with tG

5(6/r2)(uG /uT)2tL;uG
2 /r3CKol

3/2 ē, we find
^@u1
P~0,t !2u1

P~0,0!#2&5
uT

2

3 E
1

`

dxx24/3@12J0„ūGt̄ ~x21!1/2
…2J2„ūGt̄ ~x21!…1/2#.

2

3
a5/3CKolē

2/3~uGt !2/3, ~4.16!
st
expression:
where a5/3.2.149 @see Eq.~3.25!#. The time tG , for uG
,uL , is the lifetime of vortices whose lifetime equals th
crossing time by a falling particle; forr5O(1), tG coin-
cides with the eddy turnover time of vortices with charact
istic velocity uG .

For dominant inertia and short enough times, only the
piece in Eq.~4.13! will contribute and will be quadratic int̄ ;
if tS!tL ,
-

12e2 t̄2
e2ḡ t̄ y1/3

2e2 t̄

12ḡy1/3
.

1

2
ḡy1/3t̄ 2. ~4.17!

Substituting into Eq.~4.13!, we are left with the following
^@u1
P~0,t !2u1

P~0,0!#2&5
uT

2

3 E
1

`

dxx24/3H 12expF2
ḡ3 t̄ 2~x21!

4r2 E
1

` dy

y~11ḡy1/3!
G J

.
uT

2

3 E
0

`

dxx24/3H 12expF3ḡ3 t̄ 2x ln ḡ

4r2 G J . ~4.18!
4-9
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Using *0
`dxx24/3@12exp(2Ax)#53G(2/3)A1/3, we obtain,

therefore,

^@u1
P~0,t !2u1

P~0,0!#2&. 3
2 G~2/3!@3 ln~tL /tS!#1/3

3CKolē
2/3~uSt !2/3. ~4.19!

Comparing with Eqs.~3.10! and~3.14!, we see that inertia
will dominate if uS.uG and t,r22tS. As predicted in Ref.
@22#, at short times, the time structure function foruP has a
subdiffusive behavior with exponent 2/3 both for domina
uG and dominantuS . What happens is that at such short tim
scales, the particle crosses at constant speed~remember also,
in the inertia dominated case, thatSc@Si) vortices whose
velocity field is, in the limit, basically frozen; hence a Tayl
hypothesis applies, and time correlations coincide with th
spatial counterparts.

B. Velocity correlation times

Starting from Eq.~4.13!, we can calculate the correlatio
time tP for the fluid velocity sampled by a solid particle,
lid
.
ld
th
n
ol

05630
t

ir

tP5^@u1
P#2&21E

0

`

dt^u1
P~0,0!u1

P~0,t !&. ~4.20!

To lowest order, any discrepancy between the PDFs~prob-
ability distribution functions! for uL anduP can be neglected
and we havê @u1

P#2&5^@u1
L#2&5 1

2 uT
2 . We begin by analyz-

ing the case of dominant inertia:uG50. Taylor expanding in
r21 the integrand in Eq.~4.13! and substituting into Eq.
~4.20!, leads to terms that diverge when integrated inx. This
indicates that the time independent part of the inertia term
Eq. ~4.13! dominates the integral. We thus Taylor expand
r21, only the time dependent piece of the integrand in E
~4.13!, i.e.,

expF2ḡ t̄ x1/31
ḡ2~x21!

2r2 E
1

` dy

y4/3~11ḡy1/3!

3S e2 t̄1
e2ḡ t̄ y1/3

2e2 t̄

12ḡy1/3 D G ~4.21!

to obtain
E
0

`

dt^u1
P~x,0!u1

P~x,t !&5
uT

2

6 E
1

`

dxx24/3expS 2
ḡ2~x21!

2r2 E
1

` dy

y4/3~11ḡy1/3!
D

3F 1

ḡx1/3
1

ḡ~x21!

2r2 E
1

`

dy
11ḡx1/32ḡ2y1/3~x1/31y1/3!

y4/3~12ḡ2y2/3!~11ḡx1/3!~x1/31y1/3!
G ~4.22!

and we see that the integral inx of the O(r22) on second line of Eq.~4.22! is dominated in fact by a saddle point atx
5(k/k0)2;(r/ḡ)2, i.e., atk;Sl

21 . Combining this result, with the fact that the integrands are peaked aty;1, Eq.~4.22! will
take the form

E
0

`

dt^u1
P~0,0!u1

P~0,t !&5
uT

2

6 E
1

`

dxx24/3expS 2
ḡ2x

2r2E1

` dy

y4/3~11ḡy1/3!
D F 1

ḡx1/3
1

ḡx2/3

2r2 E1

` dy

y4/3~11ḡy1/3!
G . ~4.23!
ter,

Eq.

a-
We thus obtain, for the deviationtP2tL ,

tP

tL
511B~ ḡ !ḡ4/3r24/31O~r22!, ~4.24!

where

B~ ḡ !5S 2

3D 1/3

G~1/3!F1

3
2

ḡ

2
1ḡ21ḡ3ln

ḡ

11ḡ
G 2/3

. ~4.25!

It is to be noticed that the factorB(ḡ) is always positive, i.e.,
the correlation time for the fluid velocity seen by the so
particle is longer thantL . Following the argument in Ref
@37#, this would be expected in the case of a velocity fie
with statistics defined in an Eulerian frame, and is exactly
result obtained in Ref.@38#. In the case of a Lagrangia
statistics, it is not clear whether the deviation between s
e

id

and fluid particle trajectories should have led to a fas
rather than slower, decorrelation rate.

In the case of dominant gravity, as expected@17,36#, there
is always a decrease of the correlation time. In place of
~4.22!, we have

E
0

`

dt^u1
P~0,0!u1

P~0,t !&

5
uT

2

6 E
0

`

dtE
1

`

dxx24/3@J0„ūG~x21!1/2t̄ …

1J2„ūG~x21!1/2t̄ …#exp~2ḡ t̄ x1/3!, ~4.26!

which, using *0
`dxJn(bx)e2ax5b2n(a21b2)21/2@(a2

1b2)1/22a#n @31#, leads to the expression for the correl
tion time,
4-10
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tP

tL
5

2

3E0

` dx

x4/3S ḡx1/3

ūG~x21!1/2D 2H F S ḡx1/3

ūG~x21!1/2D 2

11G 1/2J .

~4.27!

We can obtain limiting expressions for this ratio, when t
crossing time (k0uG)21 is much longer or much shorter tha
the integral timetL ,

tP

tL
5H 11

2

3
~uGk0tL!2ln uGk0tL , k0uGtL!1

23/2~uGk0tL!21, k0uGtL@1.

~4.28!

C. Eulerian correlations

The limit tS→`, corresponding to the case of a partic
with infinite inertia, leads, from Eq.~4.2!, to a particle ve-
locity, which, in the absence of gravity, is identically zer
HenceuP(x,t)5u(x,t) and the time statistics for the flui
velocity seen by the particle coincides with the Eulerian t
bulent statistics. In this regime, the dimensionless units
troduced for Eq.~4.13! are not appropriate anymore. Red
fining t̄ 5gk0

t, Eq. ~4.13! takes the following form, after

writing exp(2t/tS).12t/tS:
e,

e
nd
e

tio
r

05630
-
-

^u1~0,0!u1~0,t !&5
uT

2

6 E
1

`

dxx24/3expF2 t̄ x1/32
~x21!

2r2

3S 3 t̄

2
211E

1

`

dyy22exp~2 t̄ y1/3!D G .

~4.29!

We start by calculating the Eulerian correlation time

tE5uT
22E dt^u~x,t !•u~x,0!&. ~4.30!

Contrary to Eq.~4.13!, it is the linear int, O(r22) term in
Eq. ~4.29!, which, at fixed long enought, dominates forx
→`. The same reasons leading to expand Eq.~4.21! suggest
that we must now expand

expF ~x21!

2r2 S 12E
1

`

dyy22exp~2 t̄ y1/3! D G . ~4.31!

Instead of Eq.~4.22!, we find
E
0

`

dt^u1~0,0!u1~0,t !&5
uT

2

6 E
1

`

dxx24/3F S 11
~x21!2

2r2 D S x1/31
3~x21!

4r2 D 21

2
~x21!

2r2 E
1

`

dyy22S x1/31y2/31
3~x21!

4r2 D 21G . ~4.32!
er-
f

ep
re

les
is

al
All the terms involving factorsr22 lead, after integration, to
an O(r22) result, except one that leads to anO(r22ln r)
term; the integral in Eq.~4.32! will read, to leading order in
r,

E
1

`

dx @x25/32r22x21~11r22x2/3!21#1O~r22!

.
3

2
2

3 lnr

r2
. ~4.33!

We obtain then the result for the Eulerian correlation tim

tE

tL
512

2 lnr

r2
, ~4.34!

which is shorter thantL , as expected from the fact that th
velocity field statistics is defined along fluid trajectories, a
sampling at fixed space position should lead to an increas
the rate of decorrelation. Comparing Eqs.~4.28! and ~4.36!,
we see therefore that there is a transition from a correla
time longer thantL for light particles, to a shorter one fo
,
in

n

heavy particles. The origin of this lies in the opposite ord
ings tS&t and tS@t, on which the Taylor expansions o
Eqs. ~4.21! and ~4.31! are based.@More precisely, fortS
.rtL , we havek0Sl.1 and the saddle point in Eq.~4.22!
disappears.#

As a last exercise, it is possible to calculate the swe
produced decay in an Eulerian two-point two-time structu
function in the form

Srr ~r ,t !5^@ur~r ,t !2ur~0,t !#@ur~r ,0!2ur~0,0!#&.
~4.35!

From the discussion leading from Eq.~3.14! to Eq. ~3.17!,
one finds that the structure function in Eq.~4.35! is obtained
by inserting a factor 2@12J0(rx)2J2(rx)# in the integrand
of Eq. ~4.29!. If one considers shorter time and space sca
k0r !1, t!tL , the leading cause of correlation decay
sweep, and thet̄ x1/3 in the integrand of Eq.~4.29! can be
disregarded. Again because of shortness oft/tL , one can
Taylor expand exp(2 t̄y1/3) in the same equation and the fin
result is
4-11
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Srr ~r ,t !.2CKolē
2/3r 2/3E

0

`

dxx25/3@12J0~x!2J2~x!#

3expF2
uT

2t2x2

6r 2 G . ~4.36!

The term in the exponent isO(t/Tr 21)2, with Tr 21 the sweep
time at scaler. Hence, if t@Tr 21, it is possible to Taylor
expand the Bessel functions and the result is

Srr ~r ,t !;Srr ~r ,0!E
0

`

dxx1/3exp@2~ t/Tr 21!2x2#

;Srr ~r ,0!S Tr 21

t D 4/3

, ~4.37!

i.e., a power-law decay of the structure function for tim
longer than the sweep time at that space separation.

V. SOLID TRACERS: CONCENTRATION FLUCTUATIONS

Because of inertia, the particle velocity fieldv(x,t), con-
trary to u(x,t), does not preserve volume. Physical intuiti
suggests that particles that are denser than the fluid, will t
to concentrate near the instantaneous hyperbolic points o
flow, and to escape from the elliptic ones@19,39#. For this
reason, a distributionu(x,t) of solid particles, in the absenc
of external sources, will be characterized by finite amplitu
fluctuations superimposed to a uniform mean concentra
field ū. These fluctuations are expected to have a correla
time of the order oftS and a correlation length determined
consequence. We are going to neglect any effect of gra
and set from the startuG50. We will also limit our analysis
to the case in whichtS is in the turbulent inertial range, i.e
we considertS!tL ~more precisely,tS,r22tL). In this
way, all nonuniversal effects associated with the large sc
of the flow are eliminated from the problem.

The lengthSi is crucial to the two-particle statistics, i
that it gives the scale below which solid particles move b
listically relative to one another. In fact,Sc fixes the cross-
over scale to ballistic behavior, only for the relative moti
of solid and fluid particles; the resulting picture is given
pairs of particles, separated bySi , moving ballistically over
scaleSc . It is easy to see this: ifD rv is the typical relative
velocity between two solid particles at separationr and
D ru;CKol

1/2 ( ēr )1/3 is the corresponding value for the flui
velocity, one will have for r !S, from Eq. ~4.2!: D rv
;(tSg r 21)21/2D ru; exploiting the fact that the characterist
time of variation forv is tS , the conditiontSD rv;r , gives
then r;Si .

The concentration correlationQ(r )5^u(r ,t)u(0,t)& is
proportional to the equilibrium PDFP(r ) for the separation
of a pair of solid particles advected byu(x,t). The separation
r (t) obeys an equation in the formṙ (t)5vP(x1r ,t)
2vP(x,t) @we use from now on the shorthandr (t)
[dzP(tux1r ,0)], and, for r @Si , the separation proces
takes a diffusive nature,
05630
s

nd
he

e
n
n

ty

es

l-

d

dt
^@r a~ t !2r a~0!#@r b~ t !2r b~0!#&52Dab~r !. ~5.1!

A finite level of concentration fluctuations, in the absence
external sources, is associated with a finite divergence of
diffusivity tensor:]aDabÞ0. If this component of the dif-
fusivity tensor is small, it is possible to proceed perturb
tively: Dab5Dab

(0)1Dab
(1) , P5P(0)1P(1), with ]aDab

(0)50,
P(0) uniform andP(1)(r )}^@u(r ,t)2u(0,t#2&; the equation
for the fluctuation amplitudeP(1)(r ) would read, therefore,

Dab
(0)]a]bP(1)52P(0)]a]bDab

(1) . ~5.2!

The procedure to determineDab is similar to the one leading
to Eq. ~3.17!. From Eq. ~4.4! and the relationṙ (t)5vP(x
1r ,t)2vP(x,t), we obtain

Dab~r !5 lim
T→`

1

TE0

T

dt1E
0

T

dt2E
2`

t1 dt1

tS
E

2`

t2 dt2

tS

3expS 2
t11t22t12t2

tS
DSab

P ~r ,t1 ,t2!

~5.3!

with Sab
P the time correlation of velocity differences alon

solid particle trajectories,

Sab
P ~r ,t1 ,t2!5^@ua

P~r ,t1!2ua
P~0,t1!#@ub

P~r ,t2!2ub
P~0,t2!#&

52@^ua
P~r ,t1!ub

P~r ,t2!&2^ua
P~r ,t1!ub

P~0,t2!&#.

~5.4!

We notice that, if we approximatedSab
P (r ,t1 ,t2)5Sab

L (r ,t1

2t2), since]aSab
L (r ,t12t2)50, we would obtain from Eq.

~5.3! a divergencelessDab(r ). We have to take into accoun
therefore the effect of trajectory separation described in
~4.7!. Proceeding as in the case of the one-particle statis
we arrive at the following modification of Eq.~4.10!:

^ua
P~0,t1!ub

P~r ,t2!&52E d2k

~2p!2

d2p

~2p!2
exp~ ip•r !

3
d2Z@J#

dJka~ t1!dJpb~ t2!
U

J5pJ̃r t1t2

,

~5.5!

where

J̃s,r t1t2
~t!5 J̄t1

~t!2eis•r J̄t2
~t! ~5.6!

andZ@J# andJ̄t are given in Eqs.~4.10! and~4.11!. Carrying
out the wave vector and time integrations in the definition
Z@J# and using Eqs.~5.6! and~3.1! leads, after some algebra
to the following expression for the velocity correlation:
4-12
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^ua
P~0,t1!ub

P~r ,t2!&5
CKolē

2/3

p E
0

` kdk

~k21k0
2!4/3

exp~2gkut12t2u!E
0

2p

dfF r ar b

r 2
cos2f1S dab2

r ar b

r 2 D sin2fGexp~ ikr cosf!

3expH 2CKolē
2/3tS

2k2E
0

` $F~s,t1 ,t2!1G~s,t1 ,t2!@J0~sr!1J2~sr!cos 2f#%sds

~k0
21s2!4/3~11gstS!

J , ~5.7!
lin
to

the
.

q.

its
rder
wheref is the angle betweenk and r ,

F~s,t1 ,t2!5 f ~s,t1!1 f ~s,t2!,

G~s,t1 ,t2!5 f ~s,t12t2!2F~s,t1 ,t2! ~5.8!

and

f ~s,t !512e2utu/tS2
e2gsutu2e2utu/tS

12gstS
. ~5.9!

The effect of trajectory separation is contained in the last
of Eq. ~5.7!. We see that the contribution, which leads
05630
e

finite divergence of the correlation̂ua
P(0,t1)ub

P(r ,t2)&, is the
f dependence of this factor. The remainingf dependence,
contained in the second line of this equation, is simply
factork'k'exp(ik•r ) arising in the Fourier transform of Eq
~3.1!, and would give by itself zero divergence.

The argument of the exponential in the last line of E
~5.7!, for fixed tS /tL , is O(r22), so that we may try a
Taylor expansion. However, as it happened with Eqs.~4.21!
and ~4.31!, the resulting integrals ink diverge. We therefore
keep in the exponential the time independent piece of
argument, and expand the remnant, which, to leading o
in r, gives the following expression:
ral

ly
12CKolē
2/3tS

2k2cos 2f expH 2E
0

` CKolē
2/3tS

2k2sds

~k0
21s2!4/3~11gstS!

J E
0

` G~s,t1 ,t2!J2~sr!sds

~k0
21s2!4/3~11gstS!

512CKolē
2/3tS

2k2cos 2f expH 2
3CKolē

2/3tS
2k2

2k0
2/3 J E

0

` G~s,t1 ,t2!J2~sr!sds

~k0
21s2!4/3~11gstS!

~5.10!

plus terms that would lead to a divergence free contribution to^ua
P(0,t1)ub

P(r ,t2)& and would disappear from Eq.~5.2!.
Substituting into Eq.~5.7! and then back into Eqs.~5.4! and~5.3!, we find, after carrying out the time integrals and the integ
in f,

Dab
(1)5

8CKol
3/2 ētS

2

r E
0

`

x21/3dx expH 2
3Sl

2x2

2r 2 J E
0

`

dyy25/3J2~y!F12
1

2@11~x/y!2/3#
G

3FdabS 1

2
J0~x!2J2~x!1

1

2
J4~x! D2

r ar b

r 2
J4~x!G , ~5.11!

and it is possible to see thatDab
(0) is given by the same expression valid for a fluid parcel, i.e., by Eq.~3.17!,

Dab
(0)~r !5

4a7/3CKol
1/2 ē1/3

r
r 4/3F r ar b

r 2
1

7

3 S dab2
r ar b

r 2 D G . ~5.12!

The physical content of the expansion leading to Eqs.~5.11! and ~5.12! can be clarified, noticing that, in a way perfect
analogous to Eqs.~4.10! and ~4.11!, the generating functionalZ@J# entering Eq.~5.5! can be written as

K expS ik•E dt@uL~0,t !J̄t1
~ t !2uL~r ,t !J̄t2

~ t !# D L ;expH 2
kk

2
:E dtdt8 @U~0,t2t8!@ J̄t2

~ t !J̄t2
~ t8!1 J̄t1

~ t !J̄t1
~ t8!#

22U~r ,t2t8!J̄t1
~ t !J̄t2

~ t8!#J .
4-13
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The argument in the exponential is in the form;k2
„S1

2(t1

2t2)1S2
2(t12t2,r )… with S1,2 the one- and two-particle

contributions to trajectory separation, withS1(0)50,
S1(`);Sl , and S2;CKol

1/2( ēr )1/3tS. Substituting into the
definition of Dab gives then, usingr !Sl ,

D;E dtE kdkUke
2k2S1

2
~ t !2gk t@12exp~2k2S2

2~ t,r !

2 ik"r !#;E kdkUkgk
21~12e2 ik•r !

1E k3dkUkgk
21CKol~ ēr !2/3tS

2e2k2Sl
2
,

which, using Eq. ~4.9!, is ;(CKol
1/2 ē1/3/r)@r 4/3

1r2Si
4/3(r /Sl)

2/3#. Thus, the origin of theD (1) in the two-
particle contribution to trajectory separation is confirmed,
gether with its being generated at thek0-dependent scaleSl .
This is of course confirmed by direct analysis of Eq.~5.11!;
the integral is dominated byk5x/r;Sl

21 and we obtain, for
r .Si ,

D (1)

D (0)
;

r2S4/3

~rSl !
2/3

,r2/3S tS

tL
D 1/3

. ~5.13!

Thus, fortS,r22tL , D (1),D (0) and Eq.~5.3! applies.
Using the relation *0

`dxx21/3e2ax2
J4(x)

5@G(7/3)/25a7/3G(5)#M „7/3,5,21/(4a)…, with M (a,b,x)
the confluent hypergeometric function@40#, we obtain, in
general, from Eq.~5.11!,

Dab
(1)54ra7/3CKol

1/2 ē1/3Si
4/3S r ar b

r 2
D̃~r /Sl !1dabD̂~r /Sl !D ,

~5.14!

where we can write

D̃~r /Sl !52
cb 22/3G~7/3!

a7/3G~5! S r 2

6Sl
2D 7/3

M S 7

3
,5,2

r 2

6Sl
2D ,

b5E
0

`

dyy25/3J2~y!, ~5.15!

with c.1 for r @Sl and c. 1
2 for r !Sl ; D̂ will be shown

not to contribute to the concentration correlations.
We can now calculate the probabilityP(1)(r ). Substitut-

ing Eqs.~5.13! to ~5.15! into Eq. ~5.2!, after a few manipu-
lations, leads to

] r̄ r̄
7/3] r̄ P

(1)52r2r̄ P(0)S Si

Sl
D 4/3S ] r̄

2
„D̃~ r̄ !1D̂~ r̄ !…

1
1

r̄
] r̄„2D̃~ r̄ !1D̂~ r̄ !…D , ~5.16!

where r̄ 5r /Sl . Hence, forSi!r !Sl ,
05630
-

P(1)~r !52r2P(0)S Si

Sl
D 4/3E

r /Sl

`

dyy27/3@D̃~`!2y]y„D̃~y!

1D̂~y!…2D̃~y!#

.2
3

4
r2P(0)D̃~`!S Si

r D 4/3

. ~5.17!

Using Eq.~5.15! and the limiting form for the confluent hy
pergeometric functionM (a,b,2z)5@G(b)/G(b2a)#z2a@1
1O(z21)# @40#, we get the final result,

Q~r !5 ū2F11b̄r2S Si

r D 4/3G , ~5.18!

where

b̄5
3bG~7/3!

22/3a7/3G~8/3!
.2.14. ~5.19!

In conclusion, we have a range of separationsSi!r !Sl , in
which the fluctuation correlation grows with a pow
24/3, to reach amplitude;r2 at r;Si .

The picture that arises is one of concentration fluctuati
produced at scaleSl , by compressibility of the solid particle
flow, and then transported to small scales and amplified
the incompressible part of the flow. The process is differ
from that of a passive scalar forced at large scale, due to
derivatives in the source term@and, in fact, the scaling expo
nent is different; compare with Eq.~3.36!#. This source term
is basically¹2D (1)(r ), with D (1)(r ) saturating at a constan
for r @Sl and going to zero in the opposite limit. From her
ther 24/3 scaling of Eq.~5.18! arises by dimensional analysis

What happens whenr !Si? At such short distances, th
separation process is ballistic and we cannot use a diffu
approximation anymore. In Ref.@24#, it is suggested that the
correlation buildup should stop only because of discreten
effects or because of the Brownian motion of the solid p
ticle. Actually, extrapolating the results of the present pa
to the real turbulence regimer5O(1), there is good reason
to think that, fortS.th , this buildup could stop much ear
lier, and precisely atr;Si , which, for r5O(1), coincides
with the size of vortices with eddy turnover timetS .

At separations belowSi , Eq. ~5.18! ceases to be valid
and full analysis of the distributionP(r ,D rv) is needed. A
singularity of P(r ) at r 50 would require focusing ofD rv
alongr for r !Si ; the mechanism is sketched in Fig. 1. Th
means thatP(r ,D rv) itself should develop, asr→0, a sin-
gularity atu, whereu is the angle betweenD rv and r . The
necessary trajectory focusing can be produced only by
compressible part ofv. However, forr ,Si , the production
term for the compressible part ofv can be estimated directly
from the second term in Eq.~5.10!, to beO(r22) relative to
the rest, and is able to act only for a timetS in the ballistic
region. Hence,P(r ,v̄) must be singular before this region
reached. However, forr .Si , where the diffusive approxi-
mation works, the asymmetry ofP(r ,v̄), associated with
4-14
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compressibility of the flow, can be estimated fro

^v̄av̄b& (1)/^v̄av̄b& (0);D (1)/D (0)5O(r22/3) so that singu-
larities are not expected inP(r ,v̄), for u50 andr>Si either.
The conclusion is that a plateau forQ(r ) should be presen
at r ,Si .

VI. SOLID TRACERS: ERGODIC PROPERTIES

One of the consequences of the compressibility of
velocity field v(x,t) is that the ergodic property is not sati
fied anymore: velocity moments calculated along solid p
ticle trajectories differ from those obtained from spatial a
erages. As mentioned before, physical intuition suggests
solid particles should privilege in their motion certain r
gions of the fluid with respect to the others~namely, hyper-
bolic with respect to elliptic regions!. It is difficult, however,
to translate this into a statement on the form of the PDF
the velocityuP.

We have at our disposal the equations satisfied by
velocity field uP. It is possible therefore to calculate its m
ments and to reconstruct its PDF. We consider the cas
zero gravityuG50 andtS /tL small. As in the analysis of the
concentration fluctuations, all nonuniversal effects associa
with the large scales of the flow are thus eliminated from
problem. From definition ofuP and Eqs.~4.1! and~4.2!, we
obtain the following set of equations, valid to lowest order
r21:

@] t1ũ~x,t !•“#uP~x,t !1E dy2g~x2y!uP~y,t !

5E d2yh~x2y!j~y,t !,

ũ~x,t ![uP~x,t !2vP~x,t !5E
2`

t

dt expS 2
t2t

tS
D u̇P~x,t !,

~6.1!

FIG. 1. Sketch of the behavior of particle relative velociti
inside a domain of sizeR,Si . Particle 2 moves with respect t
particle 1 at constant velocity. In order for the particle density
diverge asr→0, it is necessary that the distribution of velocities
peaked too atu50.
05630
e
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which differs from the analogous equation foruL because of
the non-volume-preserving advection termũ•¹uP. From
here we can carry on standard field theoretical perturba
theory, either by the Martin-Siggia-Rose formalism@27#, or
working directly with Eq.~6.1!. The building blocks of the
diagrammatic expansion are shown in Fig. 2, and are
propagatorGkab ,

Gkabukb
P ~ t !5E

2`

t

dt exp@2gk~ t2t!#
kakb

k2
ukb

P ~t!,

~6.2!

the correlatorUkab
P (t),

Ukab
P ~ t !5

ka
'kb

'

k2

4pCKolē
2/3

~k21k0
2!4/3

exp~2gkutu! ~6.3!

and the vertexGkabg ,

Gkabgupb
P usg

P ~ t !5 ilsbdagd~k1p1s!E
2`

t

dt

3expS 2
t2t

tS
Dusg

P ~t!]tupb
P ~t!,

~6.4!

where the coefficientl51 is introduced, as in Eq.~2.15!,
only for the purpose of book keeping. To lowest order inl,
the correlations for the fieldsuP(x,t) and uL(x,t) are trivi-
ally equal. To higher orders, differences arise, which wo
not lead, if“•ũ50, to differences between the one-poi
PDFs foruP anduL ~see also Ref.@41#!. In our case, this is
not so, and the difference between the moments of the
PDFs can be calculated in perturbation theory; toO(ln),

^~uP!m& (n)5E d2k1

~2p!2
•••

d2km

~2p!2
^uk1

~ t !•••ukm
~ t !& (n),

~6.5!

FIG. 2. Feynman diagrams for the propagatorGkab ~a!, for the
correlatorUkab

P ~b!, and the vertexGkabg ~c!.
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where^uk1
(t)•••ukm

(t)& (n) is the sum of the Feynman dia
grams withm outgoing velocity lines andn vertices. Because
of symmetry under space reflection, the lowest-order con
butions areO(l2); the corresponding diagrams are shown
Fig. 3 and lead to corrections to the velocity second a
fourth moments. In order to check for the presence of div
gences in loop diagrams, we carry on power counting on
~6.1!. Rescaling space and time as in Eq.~2.16!, we find
@l#50, implying the possibility of logarithmic divergence
Now, a perturbation expansion inl of Eq. ~6.1! ceases to be
sensible at scales below the lengthSi defined in Eq.~4.9!.
From Eq. ~4.13!, the effective decay rate for the fielduP

appears to be

gk
P5H gk , kSi!1

uSk, kSi@1,
~6.6!
g

v
t

05630
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q.

and this expression should be substituted forg in Eqs.~6.1!–
~6.3!. For kSi@1, gk

P is just the inverse of the crossing tim
of an eddy of sizek21. In this largek range, the appropriate
scaling for the frequency should be, instead of the one p
vided by Eq.~2.17!, which leads to@l#50, the following
one:

@ t#51, @l#52@u#52 1
2 . ~6.7!

The change of scaling ingP is therefore sufficient to regu
larize the divergent diagrams, providing an effective ult
violet cutoff atk5Si

21 .
We calculate explicitly the loop diagram in Fig. 3, and t

corresponding correction tô(uP)2&,
esult:
^~uP!2& (2)5E d2p

~2p!2

d2s

~2p!2E2`

0

dt1E
2`

0

dt2E
2`

t1
dt1E

2`

t2
dt2expS 2gk

P~ t11t2!2
t11t22t12t2

tS
D

3dab]t1
]t2

sgsd@Upgd
P ~t12t2!Usab

P ~ t12t2!1Upgb
P ~t12t2!Usad

P ~ t12t2!

1Upag
P ~ t12t2!Usab

P ~t12t2!1Upab
P ~ t12t2!Usgd

P ~t12t2!#,

wherek52p2s. The time integrations can be carried out at once and, after some algebra, we reach the following r

^~uP!2& (2)52E d2p

~2p!2

d2s

~2p!2

Up
PUs

Pgp
P~p'•s!2

~gk
P1gp

P1gs
P!~gk

P1gs
P1tS

21!~gp
P1tS

21!gk
Pp2 F2gp

PtS~gk
P1gp

P1gs
P1tS

21!

1
~p•s!

s2

gs
P

gs
P1tS

21 ~gk
P1gs

P2tS
21!G , ~6.8!
eir
-
be-
ge
whereUk5Ukaa(0). As predicted in the discussion leadin
to Eqs.~6.6! and ~6.7!, substitutinggP→g would lead to a
logarithmically divergent integral. Comparing with Eq.~4.9!,
we see that this integral receives contribution from wa
vectors in the range@S21,Si

21#, i.e., from those eddies fas

e

enough for the particles to be unable to respond to th
velocity field, but still sufficiently slow for trajectory separa
tion to be considered a perturbation. To find the leading
havior inSi

21 , the integral can be rewritten, after the chan
of variablesy5(g (ps)1/2tS)21, z5p/q, in the form
^~uP!2& (2)5
3uS

2

16p3r2E0

2p

dfE
0

`dz

z Er22

` dy

y

sin2f

~ p̄2/31 s̄2/31 k̄2/3!~ k̄2/31 s̄2/31y!~ p̄2/31y!k̄2/3p̄2/3F2~ p̄2/31 s̄2/31 k̄2/31y!

1
y cosf

s̄2/31y
~ s̄2/31 k̄2/32y!G1O~r22!, ~6.9!
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where k̄5(ps)21/2k, p̄5(ps)21/2p, s̄5(ps)21/2s, cosf

5p̄• s̄. We obtain then the final result,

^~uP!2& (2)5
h̄ ln r

r2
uS

2 , ~6.10!

where

h̄5
3

8p3E0

2p

dfE
0

`dz

z

z1/3sin2f

~z1z2112 cosf!1/3

3F2
1

~z1z2112 cosf!1/31z1/3

1
cosf

z1/31z21/31~z1z2112 cosf!1/3G
.20.32 ~6.11!

is evaluated by numerical integration. The correction to
velocity amplitude is negative. In the presence of iner
solid tracers prefer therefore to lie in regions of the flo
where the turbulent velocity is smaller.

Extrapolating Eq. ~6.10! to r5O(1) suggests tha
^(uP)2&2uT

2;uS
2. We can have some idea of what we shou

expect for dominant gravityuS,uG, from dimensional
analysis of Eq.~6.8!. In this casegk→uGk, the inverse
sweep time due to the particle fall, and we would fi
^(uP)2& (2);k4Uk

2/uG
2 , with k21;uGtS giving the transition

to the small scales for which the sweep time is shorter t
tS, and to which the particles are unable to respond. Fr
here we find^(uP)2&2uT

2;(uS/uG)2/3uS
2 and we see tha

gravity reduces the amount of nonergodicity of the solid p
ticle flow.

VII. CONCLUSIONS

Consideration of a finite correlation time in the transp
by a random velocity field has allowed analysis of a series
issues. We summarize the main results in the following.

~i! The self-diffusion of a fluid parcel obeys linear scalin
in the inertial range~as it should! with a universal constan
C05CKol

3/2 @ r̂r/( r̂2r)# ln r̂/r @see Eqs.~3.7!–~3.10!#, which
is sensitive both to the ratio of the eddy turnover and li

FIG. 3. Feynman diagrams providing the lowest order correc
to ^(uP)2& ~a! and ^(uP)4& ~b!.
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time, and to the rate of eddy velocity decorrelation at tim
much shorter than the eddy lifetime. A quadratic maximu
~at least!, at time separation equal to zero, is necessary
C0 to remain finite.~An exponential time correlation, fo
instance, would not satisfy this condition.! This sensitivity on
the short time behavior of time correlation was not observ
in any of the other transport processes considered in
present paper.

~ii ! The relative diffusion of a pair of fluid parcels, exhib
its ~again as it should! Richardson and normal diffusion be
havior, respectively, for coordinates and velocities. The P
for relative separation is a stretched exponential with ex
nent 2

3 @see Eq.~3.21!# and it is possible to express the un
versal constantsc and c̃ entering, respectively, coordinat
and velocity dispersion, in terms of the parameterr. Pre-
cisely, c.0.748CKol

3/2 /r3 and c̃.3.037CKol
3/2 /r @see Eqs.

~3.23! and ~3.26!#. For the Batchelor constant, we obta
instead@see Eq.~3.39!# B.11.32r.

~iii ! The correlation timetP for the fluid velocity sampled
by a solid particle has a behavior consistent with previo
analysis neglecting the structure of the turbulent iner
range@17,38#. Values oftP /tL , above unity are found for
dominant inertia and tS&tL , with tP /tL21
5O„(tS /rtL)4/3

… @see Eq.~4.25!#. On the contrary, in the
case of dominant gravity,tP /tL,1 irrespective of the value
of the ratiouT /uG between the turbulent and the fall velo
ity; specifically @see Eq. ~4.28!#, we find tP /tL21
5O„(uGk0tL)2

… for uG!uL , and tP /tL5O„(uGk0tL)21
…

in the opposite case. For short times, the expected subli
behavior for the fluid velocity along a solid particle traje
tory is found: ^uuP(x,t)2uP(x,0)u2&;( ēuAt)2/3, with A
5G,S depending on whether gravity or inertia dominat
@see Eqs.~4.16! and ~4.19!#.

~iv! The Eulerian correlation timetE ~and by continuity,
therefore, alsotP , in the regimetS@tL) is shorter than its
Lagrangian counterpart, withtE /tL5122r22ln r @see Eq.
~4.34!#. Sweep produces a power-law decay of correlatio
between velocity increments in the formSrr (r ,t)
5^@ur(r ,t)2ur(0,t)#@ur(r ,0)2ur(0,0)#&. More precisely,
for time separations longer than the sweep timeTr 21:
Srr (r ,t);Srr (r ,0)(Tr 21 /t)4/3 @see Eq.~4.37!#.

~v! In the absence of gravity, and forr2th!tS!r22tL ,
the spectrum of concentration correlation induced by tur
lence in a solid particle suspension, is universal and
power-law behavior for separations above the sizeSi of an
eddy that is crossed by a typical solid particle in a time eq
to its lifetime. More precisely, ū22^u(r )u(0)&21
.r2(Si /r )4/3 @see Eq.~5.18!#.

~vi! The solid particle flow is nonergodic, with a differ
ence between the fluid velocity sampled along a solid tra
tory and the corresponding Eulerian average:^(uP)2&
2^u2&52(0.32 lnr/r2)uS

2 @see Eqs.~6.10! and ~6.11!#. Di-
mensional reasoning forr5O(1) suggests that gravity
should reduce this effect from̂(uP)2&2uT

2;uS
2 to ^(uP)2&

2uT
2;(uS/uG)2/3uS

2.
Analysis of some of these problems actually did not e

ploit the finite correlation time of the velocity field produce
through Eq.~2.7!. In particular, the process of fluid parce
relative dispersion was considered to the same order inr as

n
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in the Kraichnan model and, to this level, no information
the Lagrangian statistics was necessary. Finiteness of the
relation time had the only purpose to allow a meaning
definition of quantities such asCKol and ē.

In the case of the self-diffusion properties of fluid a
solid particles, a finite correlation time and inclusion of t
Lagrangian nature of time correlation was necessary from
start. Nonetheless, the only point in which analysis of
random velocity field could not be avoided, was to determ
the dimensionless constantC0 @14,29#; the diffusion expo-
nents in the various cases were already available by dim
sional reasoning.

Evaluation of the correlation timetP and analysis of con-
centration fluctuations and nonergodicity of particle trajec
ries @points~iv!–~vi!#, instead, rested heavily on the fact th
the correlation time was finite and on knowledge of the
tual form of the random velocity field time correlation. Th
analysis confirmed the role of eddies with lifetimetS , al-
ready pointed out in Ref.@22#.

Some comments are due on these last issues. As reg
correlation times, they depend, in general, on nonunive
aspects of the velocity statistics, and, in the present case
the assumption that also the large scale statistics is defi
along Lagrangian trajectories. In consequence of this,
Eulerian time of the flow resulted shorter than the Lagra
ian correlation time.~Following Ref.@37#, the Eulerian cor-
relation feels, at the same time, the decorrelation from r
tive motion of the fluid, and the effect of eddy decay.! For
tS!tL , the standard picture of inertia and gravity leadin
respectively, to increase and decrease of the correlation t
however, was confirmed.

As regards concentration fluctuations, previous treatme
of this problem, either were limited to the case of partic
with Stokes time shorter than the Kolmogorov time of t
flow @24#, or neglected turbulent small scale structures a
gether@23#. This was due to the difficulty in analyzing tra
jectory crossing effects on inertial range scales, associ
with the need for a proper treatment of the Lagrangian ti
statistics. The fully kinetic treatment adopted here, in wh
the relative motion of individual solid particles is fully take
into account, in contrast to the fluid equation approach u
in Ref. @24#, together with the larger limit, is what allows
treatment of the problem.

It should be mentioned that solid particle concentrat
fluctuations may be important in the process of rain form
tion. It is known that the settling rate of a suspension
enhanced in the presence of clumping of the heavy parti
@42#, and turbulence induced concentration fluctuations
pear to be one of the important actors in the process@43#.
Inclusion of the effect of gravity, on the same lines of t
analysis carried on in Sec. IV would therefore be necess

As regards nonergodicity of the solid particle flow,
should be mentioned that this is a problem one has to
with, before trying to extend standard Lagrangian transp
models ~in particular, the well mixedness hypothesis
which they are based@14#! to the case of solid particles.

An important aspect that must be stressed, in the calc
tion of bothtP and the concentration correlation spectrum
the role played by the localization lengthSl . This length
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ceases to have a physical meaning for finiter, nonetheless, it
fixes, in perturbation theory, the scale at which both fluct
tions and the differencetP2tL are generated. Notice that, i
the case of concentration fluctuations, this occurs in spite
the fact that the concentration correlations are peaked a
inertial scaleSi .

Another peculiarity of the larger expansion is the multi-
plicity of space scales associated with eddies having time
velocity scales related totS anduS @see Eqs.~4.6! and~4.9!#.
All of them collapse, forr5O(1), on thesize of a vortex
with turnover time equal totS . In real high Reynolds num-
ber turbulence, this is the saturation length expected for c
centration fluctuation buildup, whentS is an inertial range
quantity.

The parametersr andr̂ are central to the extension of th
Kraichnan model to finite correlation times. The situation
reference in real flows is the inverse cascade range of t
dimensional turbulence. An estimate of these parame
could be obtained using the leadingr expressions provided
by Eqs.~3.10!, ~3.23!, ~3.26!, and~3.39!, with the values of

the constantsC0 , c, c̃, and B obtained from DNS. For in-

stance, assumingr̂5`, comparison with the results pre
sented in Ref.@32# would giver.2.

The results of the present paper have been obtaine
leading order inr. To this order, no perturbative effects i
the structure of random velocity fields are present, and
correlations for the Lagrangian velocityuL obey Eq.~2.6!.
The parameters entering these correlations must, none
less, be considered as renormalized quantities in a renor
ized statistical field theory. No claim on the nature of the
renormalizations is made, apart from that, to lowest ord
marginality of interactions suggests that correction to sca
be only logarithmic.

To this order inr, extension of the results to three dime
sions presents no conceptual difficulties. In particular,
mechanism of production for concentration fluctuations, a
for correlation time and PDF corrections, is not expected
suffer modifications. Whether a random velocity field mod
like the present one could be appropriate to describe tra
port by a three dimensional turbulence, laden with coher
structures and intermittency, is a different matter.

The present extension to finite correlation times of t
Kraichnan model is perturbative in nature. Imposition
time statistics along Lagrangian trajectories had as con
quence a non-Gaussian velocity field. This resulted in a fi
theoretical perturbation theory, with expansion parame
r21, which is somewhat different from other field theorie
arising from closure analysis of the Navier-Stokes equati
It would be interesting to understand the relation with su
theories, in particular, with the quasi-Lagrangian approa
described in Ref.@44# and following papers based on th
work ~see Ref.@45# and references therein!.

There are situations in which the higher orders inr21

become necessary. A relevant example could be the de
tion of a turbulent closure: in this case, extension of t
theory to realistic values ofr could not be avoided. Relate
to this issue, is the calculation of the anomalous scaling
4-18
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ponents for a passive scalar advected by a random velo
field with finite correlation time. The analysis of pair diffu
sion carried on in Sec. III proceeded, at the end, as if
velocity field had zero correlation time. To lowest order
r21, the same zero-mode structure of the Kraichnan mo
is therefore expected@8#. To proceed in a consistent way, on
should go to higher order, at the same time, in the pas
tracer part of the problem and in the field theory for t
velocity field. Such issues, concerning the nature of the fi
.

v,

s

s.

tt
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theoretical perturbation expansion, will be analyzed in
separate publication.
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